ArticleOriginal scientific text

Title

Markov operators: applications to diffusion processes and population dynamics

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Staromiejska 8/6 40-013 Katowice, Poland

Abstract

This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.

Keywords

Markov operator, asymptotic stability, diffusion process, partial differential equation

Bibliography

  1. V. Balakrishnan, C. Van den Broeck and P. Hanggi, First-passage times of non-Markovian processes: the case of a reflecting boundary, Phys. Rev. A 38 (1988), 4213-4222.
  2. K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 58 (1993), 161-175.
  3. W. Bartoszek and T. Brown, On Frobenius-Perron operators which overlap supports, Bull. Polish Acad. Sci. Math. 45 (1997), 17-24.
  4. V. Bezak, A modification of the Wiener process due to a Poisson random train of diffusion-enhancing pulses, J. Phys. A 25 (1992), 6027-6041.
  5. S. Chandrasekhar and G. Münch, The theory of fluctuations in brightness of the Milky-Way, Astrophys. J. 125, 94-123.
  6. O. Diekmann, H. J. A. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biol. 19 (1984), 227-248.
  7. S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, New York, 1969.
  8. R. Z. Hasminskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solutions of the Cauchy problem for parabolic equations, Teor. Veroyatnost. Primen. 5 (1960), 196-214 (in Russian).
  9. T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228.
  10. A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994.
  11. A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62.
  12. J. Łuczka and R. Rudnicki, Randomly flashing diffusion: asymptotic properties, J. Statist. Phys. 83 (1996), 1149-1164.
  13. M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol. 33 (1994), 89-109.
  14. J. Malczak, An application of Markov operators in differential and integral equations, Rend. Sem. Mat. Univ. Padova 87 (1992), 281-297.
  15. J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath. 68, Springer, New York, 1986.
  16. K. Pichór, Asymptotic stability of a partial differential equation with an integral perturbation, Ann. Polon. Math. 68 (1998), 83-96,
  17. K. Pichór and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl. 215 (1997), 56-74.
  18. K. Pichór and R. Rudnicki, Asymptotic behaviour of Markov semigroups and applications to transport equations, Bull. Polish Acad. Sci. Math. 45 (1997), 379-397.
  19. R. Rudnicki, Asymptotic behaviour of a transport equation, Ann. Polon. Math. 57 (1992), 45-55.
  20. R. Rudnicki, Asymptotic behaviour of an integro-parabolic equation, Bull. Polish Acad. Sci. Math. 40 (1992), 111-128.
  21. R. Rudnicki, Asymptotic properties of the Fokker-Planck equation, in: Chaos--The Interplay between Stochastics and Deterministic Behaviour, Karpacz '95 Proc., P. Garbaczewski, M. Wolf and A. Weron (eds.), Lecture Notes in Phys. 457, Springer, Berlin, 1995, 517-521.
  22. R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262.
  23. R. Rudnicki, Asymptotic stability of Markov operators: a counter-example, ibid. 45 (1997), 1-5.
  24. R. Rudnicki and K. Pichór, Markov semigroups and stability of the cell maturity distribution, J. Biol. Systems, submitted.
  25. J. Traple, Markov semigroups generated by Poisson driven differential equations, Bull. Polish Acad. Sci. Math. 44 (1996), 230-252.
  26. J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475.
  27. J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, ibid. 23 (1986), 231-246.
Pages:
67-79
Main language of publication
English
Received
1999-01-15
Published
2000
Exact and natural sciences