PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 26 | 4 | 457-465
Tytuł artykułu

Local convergence of inexact Newton methods under affine invariant conditions and hypotheses on the second Fréchet derivative

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative of the operator involved. This approach showed that the upper error bounds on the distances involved are smaller compared with the corresponding ones using hypotheses on the first Fréchet derivative. However, the conditions on the forcing sequences were not given in affine invariant form. The advantages of using conditions given in affine invariant form were explained in [3], [10]. Here we reproduce all the results obtained in [3] but using affine invariant conditions.
Rocznik
Tom
26
Numer
4
Strony
457-465
Opis fizyczny
Daty
wydano
1999
otrzymano
1999-02-25
poprawiono
1999-08-30
poprawiono
1999-11-08
Twórcy
  • Department of Mathematics, Cameron University, Lawton, OK 73505, U.S.A.
Bibliografia
  • [1] I. K. Argyros, On the convergence of some projection methods with perturbation, J. Comput. Appl. Math. 36 (1991), 255-258.
  • [2] I. K. Argyros, Comparing the radii of some balls appearing in connection to three local convergence theorems for Newton's method, Southwest J. Pure Appl. Math. 1 (1998), 32-43.
  • [3] I. K. Argyros, Relations between forcing sequences and inexact Newton iterates in Banach space, Computing 62 (1999), 71-82.
  • [4] I. K. Argyros and F. Szidarovszky, The Theory and Application of Iteration Methods, CRC Press, Boca Raton, FL, 1993.
  • [5] P. N. Brown, A local convergence theory for combined inexact-Newton/finite-difference projection methods, SIAM J. Numer. Anal. 24 (1987), 407-434.
  • [6] R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19, (1982), 400-408.
  • [7] J. M. Gutierrez, A new semilocal convergence theorem for Newton's method, J. Comput. Appl. Math. 79 (1997), 131-145.
  • [8] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
  • [9] F. A. Potra, On Q-order and R-order of convergence, SIAM J. Optim. Theory Appl. 63 (1989), 415-431.
  • [10] T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (1984), 583-590.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv26i4p457bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.