ArticleOriginal scientific text
Title
Quadratic Isochronous centers commute
Authors 1
Affiliations
- Dipartimento di Matematica, Università di Trento, I-38050 Povo (TN), Italy
Abstract
We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.
Keywords
commuting vector field, isochronous center, quadratic polynomial system
Bibliography
- [AFG] A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form, preprint.
- [C] R. Conti, Centers of polynomial systems in
, preprint, Firenze, 1990. - [CDL] C. J. Christopher, J. Devlin and N. G. Lloyd, On the classification of Liénard systems with amplitude-independent periods, preprint.
- [CGG1] J. Chavarriga, J. Giné and I. García, Isochronous centers of cubic systems with degenerate infinity, Differential Equations Dynam. Systems 7 (1999), to appear.
- [CGG2] J. Chavarriga, J. Giné and I. García, Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomials, Bull. Sci. Math. 123 (1999), 77-96.
- [CGG3] J. Chavarriga, J. Giné and I. García, Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials, preprint, Univ. de Lleida.
- [CJ] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989), 433-486.
- [D] J. Devlin, Coexisting isochronous and nonisochronous centers, Bull. Lond. Math. Soc. 28 (1996), 495-500.
- [GGM1] A. Gasull, A. Guillamon and V. Mañosa, An explicit expression of the first Lyapunov and period constants with applications, J. Math. Anal. Appl. 211 (1997), 190-212.
- [GGM2] A. Gasull, A. Guillamon and V. Mañosa, Centre and isochronicity conditions for systems with homogeneous nonlinearities, in: Proc. 2nd Catalan Days on Appl. Math., Collect. Études, Presses Univ. Perpignan, Perpignan, 1995, 105-116.
- [L] W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contrib. Differential Equations 3 (1964), 21-36.
- [MRT] P. Mardešić, C. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations 121 (1995), 67-108.
- [MS] L. Mazzi and M. Sabatini, Commutators and linearizations of isochronous centers, preprint UTM 482, Univ. of Trento, 1996.
- [NS] V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, NJ, 1960.
- [O] Z. Opial, Sur les périodes des solutions de l'équation différentielle x'' + g(x) = 0, Ann. Polon. Math. 10 (1961), 49-72.
- [P] I. I. Pleshkan, A new method of investigating the isochronicity of a system of two differential equations, Differential Equations 5 (1969), 796-802.
- [S1] M. Sabatini, On the period function of Liénard systems, J. Differential Equations 152 (1999), 467-487.
- [S2] M. Sabatini, Quadratic isochronous centers commute, preprint UTM 461, Univ. of Trento, 1995.
- [S3] M. Sabatini, Qualitative analysis of commuting flows on two-dimensional manifolds, in: EQUADIFF 95-International Conf. on Differential Equations (Lisboã, 1995), L. Magalhaes, C. Rocha and L. Sanchez (eds.), World Sci., Singapore, 1998, 494-497.
- [S4] M. Sabatini, Characterizing isochronous centers by Lie brackets, Differential Equations Dynam. Systems 5 (1997), 91-99.
- [S5] M. Sabatini, Dynamics of commuting systems on two-dimensional manifolds, Ann. Mat. Pura Appl. (4) 173 (1997), 213-232.
- [SC] G. Sansone e R. Conti, Equazioni differenziali non lineari, Cremonese, Roma, 1956.
- [U] M. Urabe, Potential forces which yield periodic motions of a fixed period, J. Math. Mech. 10 (1961), 569-578.
- [V] M. Villarini, Regularity properties of the period function near a center of a planar vector field, Nonlinear Anal. 19 (1992), 787-803.