ArticleOriginal scientific text

Title

Quadratic Isochronous centers commute

Authors 1

Affiliations

  1. Dipartimento di Matematica, Università di Trento, I-38050 Povo (TN), Italy

Abstract

We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.

Keywords

commuting vector field, isochronous center, quadratic polynomial system

Bibliography

  1. [AFG] A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form, preprint.
  2. [C] R. Conti, Centers of polynomial systems in R2, preprint, Firenze, 1990.
  3. [CDL] C. J. Christopher, J. Devlin and N. G. Lloyd, On the classification of Liénard systems with amplitude-independent periods, preprint.
  4. [CGG1] J. Chavarriga, J. Giné and I. García, Isochronous centers of cubic systems with degenerate infinity, Differential Equations Dynam. Systems 7 (1999), to appear.
  5. [CGG2] J. Chavarriga, J. Giné and I. García, Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomials, Bull. Sci. Math. 123 (1999), 77-96.
  6. [CGG3] J. Chavarriga, J. Giné and I. García, Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials, preprint, Univ. de Lleida.
  7. [CJ] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989), 433-486.
  8. [D] J. Devlin, Coexisting isochronous and nonisochronous centers, Bull. Lond. Math. Soc. 28 (1996), 495-500.
  9. [GGM1] A. Gasull, A. Guillamon and V. Mañosa, An explicit expression of the first Lyapunov and period constants with applications, J. Math. Anal. Appl. 211 (1997), 190-212.
  10. [GGM2] A. Gasull, A. Guillamon and V. Mañosa, Centre and isochronicity conditions for systems with homogeneous nonlinearities, in: Proc. 2nd Catalan Days on Appl. Math., Collect. Études, Presses Univ. Perpignan, Perpignan, 1995, 105-116.
  11. [L] W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contrib. Differential Equations 3 (1964), 21-36.
  12. [MRT] P. Mardešić, C. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations 121 (1995), 67-108.
  13. [MS] L. Mazzi and M. Sabatini, Commutators and linearizations of isochronous centers, preprint UTM 482, Univ. of Trento, 1996.
  14. [NS] V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, NJ, 1960.
  15. [O] Z. Opial, Sur les périodes des solutions de l'équation différentielle x'' + g(x) = 0, Ann. Polon. Math. 10 (1961), 49-72.
  16. [P] I. I. Pleshkan, A new method of investigating the isochronicity of a system of two differential equations, Differential Equations 5 (1969), 796-802.
  17. [S1] M. Sabatini, On the period function of Liénard systems, J. Differential Equations 152 (1999), 467-487.
  18. [S2] M. Sabatini, Quadratic isochronous centers commute, preprint UTM 461, Univ. of Trento, 1995.
  19. [S3] M. Sabatini, Qualitative analysis of commuting flows on two-dimensional manifolds, in: EQUADIFF 95-International Conf. on Differential Equations (Lisboã, 1995), L. Magalhaes, C. Rocha and L. Sanchez (eds.), World Sci., Singapore, 1998, 494-497.
  20. [S4] M. Sabatini, Characterizing isochronous centers by Lie brackets, Differential Equations Dynam. Systems 5 (1997), 91-99.
  21. [S5] M. Sabatini, Dynamics of commuting systems on two-dimensional manifolds, Ann. Mat. Pura Appl. (4) 173 (1997), 213-232.
  22. [SC] G. Sansone e R. Conti, Equazioni differenziali non lineari, Cremonese, Roma, 1956.
  23. [U] M. Urabe, Potential forces which yield periodic motions of a fixed period, J. Math. Mech. 10 (1961), 569-578.
  24. [V] M. Villarini, Regularity properties of the period function near a center of a planar vector field, Nonlinear Anal. 19 (1992), 787-803.
Pages:
357-362
Main language of publication
English
Received
1999-04-07
Published
1999
Exact and natural sciences