ArticleOriginal scientific text
Title
Gradient method for non-injective operators in Hilbert space with application to Neumann problems
Authors 1
Affiliations
- Applied Analysis Department, Loránd Eötvös University, Múzeum krt. 6-8, H-1088 Budapest, Hungary
Abstract
The gradient method is developed for non-injective non-linear operators in Hilbert space that satisfy a translation invariance condition. The focus is on a class of non-differentiable operators. Linear convergence in norm is obtained. The method can be applied to quasilinear elliptic boundary value problems with Neumann boundary conditions.
Keywords
Neumann boundary value problems, non-injective non-linear operator, gradient method, Hilbert space
Bibliography
- J. Céa, Lectures on Optimization. Theory and Algorithms, Springer, 1978.
- J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4 (1967), 10-26.
- Yu. V. Egorov and M. A. Shubin, Partial Differential Equations I, Encyclopaedia Math. Sci., Springer, 1992.
- I. Faragó and J. Karátson, The gradient-finite element method for elliptic problems, in: Conference on Numerical Mathematics and Computational Mechanics, University of Miskolc, 1998.
- H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.
- L. V. Kantorovich, On an effective method of solving extremal problems for quadratic functionals, Dokl. Akad. Nauk SSSR 48 (1945), 455-460.
- L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, 1982.
- J. Karátson, The gradient method for non-differentiable operators in product Hilbert spaces and applications to elliptic systems of quasilinear differential equations, J. Appl. Anal. 3 (1997), 225-237.
- J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Wiley, 1986.
- V. S. Vladimirov, A Collection of Problems on the Equations of Mathematical Physics, Mir, Moscow, 1986.