ArticleOriginal scientific text

Title

Gradient method for non-injective operators in Hilbert space with application to Neumann problems

Authors 1

Affiliations

  1. Applied Analysis Department, Loránd Eötvös University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

The gradient method is developed for non-injective non-linear operators in Hilbert space that satisfy a translation invariance condition. The focus is on a class of non-differentiable operators. Linear convergence in norm is obtained. The method can be applied to quasilinear elliptic boundary value problems with Neumann boundary conditions.

Keywords

Neumann boundary value problems, non-injective non-linear operator, gradient method, Hilbert space

Bibliography

  1. J. Céa, Lectures on Optimization. Theory and Algorithms, Springer, 1978.
  2. J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4 (1967), 10-26.
  3. Yu. V. Egorov and M. A. Shubin, Partial Differential Equations I, Encyclopaedia Math. Sci., Springer, 1992.
  4. I. Faragó and J. Karátson, The gradient-finite element method for elliptic problems, in: Conference on Numerical Mathematics and Computational Mechanics, University of Miskolc, 1998.
  5. H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.
  6. L. V. Kantorovich, On an effective method of solving extremal problems for quadratic functionals, Dokl. Akad. Nauk SSSR 48 (1945), 455-460.
  7. L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, 1982.
  8. J. Karátson, The gradient method for non-differentiable operators in product Hilbert spaces and applications to elliptic systems of quasilinear differential equations, J. Appl. Anal. 3 (1997), 225-237.
  9. J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Wiley, 1986.
  10. V. S. Vladimirov, A Collection of Problems on the Equations of Mathematical Physics, Mir, Moscow, 1986.
Pages:
333-346
Main language of publication
English
Received
1999-02-02
Published
1999
Exact and natural sciences