ArticleOriginal scientific text

Title

Semi-Markov control models with average costs

Authors 1, 2

Affiliations

  1. Departamento de Matemáticas, Universidad de Sonora, Blvd. Transversal y Rosales s/n, 83000 Hermosillo Sonora, México
  2. Departamento de Matemáticas, CINVESTAV-IPN, A. postal 14-740, México D.F. 07000, México

Abstract

This paper studies semi-Markov control models with Borel state and control spaces, and unbounded cost functions, under the average cost criterion. Conditions are given for (i) the existence of a solution to the average cost optimality equation, and for (ii) the existence of strong optimal control policies. These conditions are illustrated with a semi-Markov replacement model.

Keywords

average cost, replacement models, semi-Markov control models, policy iteration (or Howard's algorithm)

Bibliography

  1. R. B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.
  2. R. N. Bhattacharya and M. Majumdar, Controlled semi-Markov models under long-run average rewards, J. Statist. Plann. Inference 22 (1989), 223-242.
  3. A. Federgruen, A. Hordijk and H. C. Tijms, Denumerable state semi-Markov decision processes with unbounded costs, average cost criterion, Stochastic Process. Appl. 9 (1979), 222-235.
  4. A. Federgruen, P. J. Schweitzer and H. C. Tijms, Denumerable undiscounted semi-Markov decision processes with unbounded rewards, Math. Oper. Res. 8 (1983), 298-313.
  5. A. Federgruen and H. C. Tijms, The optimality equation in average cost denumerable state semi-Markov decision problems. Recurrence conditions and algorithms, J. Appl. Probab. 15 (1978), 356-373.
  6. P. W. Glynn and S. P. Meyn, A Lyapounov bound for solutions of Poisson's equations, Ann. Probab. 24 (1996), 916-931.
  7. E. Gordienko and O. Hernández-Lerma, Average cost Markov control processes with weighted norms: existence of canonical policies, Appl. Math. (Warsaw) 23 (1995), 199-218.
  8. U. G. Haussmann, On the optimal long-run control of Markov renewal processes, J. Math. Anal. Appl. 36 (1971), 123-140.
  9. O. Hernández-Lerma and J. B. Lasserre, Policy iteration for average cost Markov control processes on Borel spaces, Acta Appl. Math. 47 (1997), 125-154.
  10. O. Hernández-Lerma and J. B. Lasserre, Further Topics on Discrete-Time Markov Control Processes, Springer, New York, 1999 (in press).
  11. M. Kurano, Semi-Markov decision processes and their applications in the replacement models, J. Oper. Res. Soc. Japan 28 (1985), 18-29.
  12. S. A. Lippman, Semi-Markov decision processes with unbounded rewards, Management Sci. 19 (1973), 717-731.
  13. S. A. Lippman, On dynamic programming with unbounded rewards, ibid. 21 (1975), 1225-1233.
  14. S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, London, 1993.
  15. E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge Univ. Press, Cambridge, 1984.
  16. M. L. Puterman, Markov Decision Processes. Discrete Stochastic Dynamic Programming, Wiley, New York, 1994.
  17. U. Rieder, Measurable selection theorems for optimization problems, Manuscripta Math. 24 (1978), 115-131.
  18. S. M. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Francisco, 1970.
  19. S. M. Ross, Average cost semi-Markov decision processes, J. Appl. Probab. 7 (1970), 649-656.
  20. M. Schäl, On the second optimality equation for semi-Markov decision models, Math. Oper. Res. 17 (1992), 470-486.
  21. P. J. Schweitzer, Iterative solution of the functional equations of undiscounted Markov renewal programming, J. Math. Anal. Appl. 34 (1971), 495-501.
  22. L. I. Sennott, Average cost semi-Markov decision processes and the control of queueing systems, Probab. Engrg. Inform. Sci. 3 (1989), 247-272.
  23. H. C. Tijms, Stochastic Models: An Algorithmic Approach, Wiley, Chichester, 1994.
  24. O. Vega-Amaya, Markov control processes in Borel spaces: undiscounted criteria, doctoral thesis, UAM-Iztapalapa, México, 1998 (in Spanish).
Pages:
315-331
Main language of publication
English
Received
1998-12-10
Accepted
1999-04-15
Published
1999
Exact and natural sciences