ArticleOriginal scientific text

Title

Mass transport problem and derivation

Authors 1, 2

Affiliations

  1. UPRES-A. CNRS 6085, Analyse et Modèles Stochastiques, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
  2. UPRES-A. CNRS 6085, INSA de Rouen, Département de Génie Mathématiques, Place E. Blondel, 76131 Mont Saint Aignan Cedex, France

Abstract

A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure λf:=λ(f)-1, where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.

Keywords

Monge-Kantorovich transportation problem, cyclic monotonicity, (c-c)-surface, Lévy-Wasserstein distance, optimal coupling, strongly nonatomic probability

Bibliography

  1. T. Abdellaoui et H. Heinich, Sur la distance de deux lois dans le cas vectoriel, C. R. Acad. Sci. Paris 319 (1994), 397-400.
  2. N. Belili, A theorem of stochastic representation related to the Monge-Kantorovich problem, Statist. Probab. Lett. 41 (1999), 139-143.
  3. C. L. Belna, M. J. Cargo, M. J. Evans and P. D. Humke, Analogues of the Denjoy-Young-Saks theorem, Trans. Amer. Math. Soc. 271 (1982), 253-260.
  4. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris 305 (1987), 805-808.
  5. Y. Brenier, The dual least action problem for an ideal incompressible fluid, Arch. Rational Mech. Anal. 122 (1991), 323-351.
  6. Y. Brenier, Polar factorization and monotone rearragement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417.
  7. A. Bruckner, Differentiation of Real Functions, CRM Monogr. Ser. 5, Amer. Math. Soc., 1994.
  8. J. A. Cuesta-Albertos and C. Matrán-Bea, Notes on the Wasserstein metric in Hilbert spaces, Ann. Probab. 17 (1989), 1264-1276.
  9. J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, On lower bounds for the L2-Wasserstein metric in a Hilbert space, J. Theoret. Probab. 9 (1996), 263-283.
  10. J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, Propreties of the optimal maps for the l2-Monge-Kantorovich transportation problem, preprint, 1996.
  11. C. Dellacherie et P. A. Meyer, Probabilités et potentiel, Hermann, Paris, 1983.
  12. A. Faure, Sur le théorème de Denjoy-Young-Saks, C. R. Acad. Sci. Paris 320 (1995), 415-418.
  13. W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), 113-161.
  14. K. M. Garg, Applications of Denjoy analogue. II: Local structure of level sets and Dini derivates. III: Distribution of various typical level sets, Acta Math. Acad. Sci. Hungar. 14 (1963), 183-195.
  15. H. Heinich et J. C. Lootgieter, Convergence des fonctions monotones, C. R. Acad. Sci. Paris 322 (1996), 869-874.
  16. L. V. Kantorovich, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199-201.
  17. L. V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk 3 (1948), 225-226 (in Russian).
  18. M. Knott and C. S. Smith, On the optimal transportation of distributions, J. Optim. Theory Appl. 52 (1987), 323-329.
  19. M. Knott and C. S. Smith, On Hoeffding-Fréchet bounds and cyclic monotone relations, J. Multivariate Anal. 40 (1992), 328-334.
  20. R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (1995), 309-323.
  21. R. J. McCann, personal communication, 1996.
  22. G. Monge, Mémoire sur la théorie des déblais et des remblais, dans : Histoires de l'Académie Royale des Sciences de Paris, avec les mémoires de Mathématiques et de Physique pour la même année, 1781, 257-263.
  23. S. T. Rachev, The Monge-Kantorovich mass transference problem and its stochastic applications, Theory Probab. Appl. 29 (1984), 647-676.
  24. S. T. Rachev and L. Rüschendorf, A characterization of random variables with minimum l2-distance, J. Multivariate Anal. 32 (1990), 48-54.
  25. S. T. Rachev and L. Rüschendorf, Mass Transportation Problems, Springer, New York, 1998.
  26. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970.
  27. V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. 71 (1952), 1-54.
  28. L. Rüschendorf, Fréchet bounds and their applications, in: S. Kotz, G. Dall'Aglio and G. Salinetti (eds.), Advances in Probability Distributions with Given Marginals: Beyond the Copulas, Kluwer, Dordrecht, 1991, 141-176.
  29. L. Rüschendorf, Optimal solutions of multivariate coupling problems, Appl. Math. (Warsaw) 23 (1995), 325-338.
  30. S. Saks, Sur les nombres dérivés des fonctions, Fund. Math. 5 (1924), 98-104.
  31. A. Tuero-Diaz, On the stochastic convergence of representations based on Wasserstein metrics, Ann. Probab. 21 (1993), 72-85.
  32. L. Zajiček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348.
  33. L. Zajiček, On the symmetry of Dini derivates of arbitrary functions, Comment. Math. Univ. Carolin. 22 (1981), 195-209.
Pages:
299-314
Main language of publication
English
Received
1998-12-07
Accepted
1999-04-13
Published
1999
Exact and natural sciences