ArticleOriginal scientific text
Title
Mass transport problem and derivation
Authors 1, 2
Affiliations
- UPRES-A. CNRS 6085, Analyse et Modèles Stochastiques, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
- UPRES-A. CNRS 6085, INSA de Rouen, Département de Génie Mathématiques, Place E. Blondel, 76131 Mont Saint Aignan Cedex, France
Abstract
A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure , where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.
Keywords
Monge-Kantorovich transportation problem, cyclic monotonicity, (c-c)-surface, Lévy-Wasserstein distance, optimal coupling, strongly nonatomic probability
Bibliography
- T. Abdellaoui et H. Heinich, Sur la distance de deux lois dans le cas vectoriel, C. R. Acad. Sci. Paris 319 (1994), 397-400.
- N. Belili, A theorem of stochastic representation related to the Monge-Kantorovich problem, Statist. Probab. Lett. 41 (1999), 139-143.
- C. L. Belna, M. J. Cargo, M. J. Evans and P. D. Humke, Analogues of the Denjoy-Young-Saks theorem, Trans. Amer. Math. Soc. 271 (1982), 253-260.
- Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris 305 (1987), 805-808.
- Y. Brenier, The dual least action problem for an ideal incompressible fluid, Arch. Rational Mech. Anal. 122 (1991), 323-351.
- Y. Brenier, Polar factorization and monotone rearragement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417.
- A. Bruckner, Differentiation of Real Functions, CRM Monogr. Ser. 5, Amer. Math. Soc., 1994.
- J. A. Cuesta-Albertos and C. Matrán-Bea, Notes on the Wasserstein metric in Hilbert spaces, Ann. Probab. 17 (1989), 1264-1276.
- J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, On lower bounds for the
-Wasserstein metric in a Hilbert space, J. Theoret. Probab. 9 (1996), 263-283. - J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, Propreties of the optimal maps for the
-Monge-Kantorovich transportation problem, preprint, 1996. - C. Dellacherie et P. A. Meyer, Probabilités et potentiel, Hermann, Paris, 1983.
- A. Faure, Sur le théorème de Denjoy-Young-Saks, C. R. Acad. Sci. Paris 320 (1995), 415-418.
- W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), 113-161.
- K. M. Garg, Applications of Denjoy analogue. II: Local structure of level sets and Dini derivates. III: Distribution of various typical level sets, Acta Math. Acad. Sci. Hungar. 14 (1963), 183-195.
- H. Heinich et J. C. Lootgieter, Convergence des fonctions monotones, C. R. Acad. Sci. Paris 322 (1996), 869-874.
- L. V. Kantorovich, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199-201.
- L. V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk 3 (1948), 225-226 (in Russian).
- M. Knott and C. S. Smith, On the optimal transportation of distributions, J. Optim. Theory Appl. 52 (1987), 323-329.
- M. Knott and C. S. Smith, On Hoeffding-Fréchet bounds and cyclic monotone relations, J. Multivariate Anal. 40 (1992), 328-334.
- R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (1995), 309-323.
- R. J. McCann, personal communication, 1996.
- G. Monge, Mémoire sur la théorie des déblais et des remblais, dans : Histoires de l'Académie Royale des Sciences de Paris, avec les mémoires de Mathématiques et de Physique pour la même année, 1781, 257-263.
- S. T. Rachev, The Monge-Kantorovich mass transference problem and its stochastic applications, Theory Probab. Appl. 29 (1984), 647-676.
- S. T. Rachev and L. Rüschendorf, A characterization of random variables with minimum
-distance, J. Multivariate Anal. 32 (1990), 48-54. - S. T. Rachev and L. Rüschendorf, Mass Transportation Problems, Springer, New York, 1998.
- R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970.
- V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. 71 (1952), 1-54.
- L. Rüschendorf, Fréchet bounds and their applications, in: S. Kotz, G. Dall'Aglio and G. Salinetti (eds.), Advances in Probability Distributions with Given Marginals: Beyond the Copulas, Kluwer, Dordrecht, 1991, 141-176.
- L. Rüschendorf, Optimal solutions of multivariate coupling problems, Appl. Math. (Warsaw) 23 (1995), 325-338.
- S. Saks, Sur les nombres dérivés des fonctions, Fund. Math. 5 (1924), 98-104.
- A. Tuero-Diaz, On the stochastic convergence of representations based on Wasserstein metrics, Ann. Probab. 21 (1993), 72-85.
- L. Zajiček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348.
- L. Zajiček, On the symmetry of Dini derivates of arbitrary functions, Comment. Math. Univ. Carolin. 22 (1981), 195-209.