PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 26 | 3 | 281-291
Tytuł artykułu

A note on orthogonal series regression function estimators

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of nonparametric estimation of the regression function f(x) = E(Y | X=x) using the orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,2,..., is considered in the case where a sample of i.i.d. copies $(X_i,Y_i)$, i=1,...,n, of the random variable (X,Y) is available and the marginal distribution of X has density ϱ ∈ $L^1$[a,b]. The constructed estimators are of the form $\widehat f_n(x) = \sum_{k=0}^{N(n)}\widehat c_ke_k(x)$, where the coefficients $\widehat c_0,\widehat c_1,...,\widehat c_N$ are determined by minimizing the empirical risk $n^{-1}\sum_{i=1}^n(Y_i - \sum_{k=0}^Nc_ke_k(X_i))^2$. Sufficient conditions for consistency of the estimators in the sense of the errors $E_X\vert f(X)-\widehat f_n(X)\vert^2$ and $n^{-1}\sum_{i=1}^nE(f(X_i)-\widehat f_n(X_i))^2$ are obtained.
Rocznik
Tom
26
Numer
3
Strony
281-291
Opis fizyczny
Daty
wydano
1999
otrzymano
1998-10-01
poprawiono
1999-03-04
Twórcy
  • Department of Standards, Central Statistical Office, Al. Niepodległości 208, 00-925 Warszawa, Poland
Bibliografia
  • [1] A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conference on Neural Networks, San Diego, California, IEEE Press, New York, 1988, 657-664.
  • [2] L. Györfi and H. Walk, On the strong universal consistency of a series type regression estimate, Math. Methods Statist. 5 (1996), 332-342.
  • [3] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (1995), 677-687.
  • [4] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102.
  • [5] --, Consistency of trigonometric and polynomial regression estimators, ibid. 25 (1998), 73-83.
  • [6] G. Sansone, Orthogonal Functions, Interscience Publ., New York, 1959.\vadjust
  • [7] V. N. Vapnik, Estimation of Dependencies Based on Empirical Data, Springer, New York, 1982.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv26i3p281bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.