We consider multidimensional tree-based models of arbitrage-free and path-independent security markets. We assume that no riskless investment exists. Contingent claims pricing and hedging problems in such a market are studied.
Institute of Mathematics and Informatics, Akademijos 4, Vilnius 2600, Lithuania
Bibliografia
J. C. Cox, S. A. Ross and M. Rubinstein (1979), Option pricing: a simplified approach, J. Financial Econom. 7, 229-263.
J. M. Harrison and S. Pliska (1981), Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process. Appl. 11, 215-260.
J. Jacod and A. N. Shiryaev (1998), Local martingales and the fundamental asset pricing theorems in the discrete-time case, Finance Stochastics 2, 259-273.
B. A. Jensen and J. A. Nielsen (1996), Pricing by 'No arbitrage', in: Time Series Models in Econometrics, Finance and Other Fields, D. R. Cox et al. (eds.), Chapman & Hall, London, 177-223.
Yu. M. Kabanov and D. O. Kramkov (1994), No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison-Pliska theorem, Theory Probab. Appl. 39, 635-640.
D. Lamberton and B. Lapeyre (1996), Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall, London.
J. B. Long Jr. (1990), The numeraire portfolio, J. Financial Econom. 26, 29-69.
M. Motoczyński and Ł. Stettner (1998), On option pricing in the multidimensional Cox-Ross-Rubinstein model, Appl. Math. (Warsaw) 25, 55-72.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv26i3p253bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.