ArticleOriginal scientific text
Title
Security price modelling by a binomial tree
Authors 1, 2
Affiliations
- Department of Mathematics, Vilnius University, Naugarduko 24, Vilnius 2600, Lithuania
- Institute of Mathematics and Informatics, Akademijos 4, Vilnius 2600, Lithuania
Abstract
We consider multidimensional tree-based models of arbitrage-free and path-independent security markets. We assume that no riskless investment exists. Contingent claims pricing and hedging problems in such a market are studied.
Keywords
numeraire portfolio, binomial market model, arbitrage-free market
Bibliography
- J. C. Cox, S. A. Ross and M. Rubinstein (1979), Option pricing: a simplified approach, J. Financial Econom. 7, 229-263.
- J. M. Harrison and S. Pliska (1981), Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process. Appl. 11, 215-260.
- J. Jacod and A. N. Shiryaev (1998), Local martingales and the fundamental asset pricing theorems in the discrete-time case, Finance Stochastics 2, 259-273.
- B. A. Jensen and J. A. Nielsen (1996), Pricing by 'No arbitrage', in: Time Series Models in Econometrics, Finance and Other Fields, D. R. Cox et al. (eds.), Chapman & Hall, London, 177-223.
- Yu. M. Kabanov and D. O. Kramkov (1994), No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison-Pliska theorem, Theory Probab. Appl. 39, 635-640.
- D. Lamberton and B. Lapeyre (1996), Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall, London.
- J. B. Long Jr. (1990), The numeraire portfolio, J. Financial Econom. 26, 29-69.
- M. Motoczyński and Ł. Stettner (1998), On option pricing in the multidimensional Cox-Ross-Rubinstein model, Appl. Math. (Warsaw) 25, 55-72.