ArticleOriginal scientific text

Title

On approximations of nonzero-sum uniformly continuous ergodic stochastic games

Authors 1

Affiliations

  1. Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

We consider a class of uniformly ergodic nonzero-sum stochastic games with the expected average payoff criterion, a separable metric state space and compact metric action spaces. We assume that the payoff and transition probability functions are uniformly continuous. Our aim is to prove the existence of stationary ε-equilibria for that class of ergodic stochastic games. This theorem extends to a much wider class of stochastic games a result proven recently by Bielecki [2].

Keywords

Nash equilibrium, general state space, nonzero-sum Markov game, long run average reward criterion

Bibliography

  1. D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1979.
  2. T. R. Bielecki, Approximations of dynamic Nash games with general state and action spaces and ergodic costs for the players, Appl. Math. (Warsaw) 24 (1996), 195-202.
  3. E. B. Dynkin and A. A. Yushkevich, Controlled Markov Processes, Springer, New York, 1979.
  4. J. P. Georgin, Contrôle de chaînes de Markov sur des espaces arbitraires, Ann. Inst. H. Poincaré Sér. B 14 (1978), 255-277.
  5. O. Hernández-Lerma and J. B. Lasserre, Discrete Time Markov Control Pro- cesses: Basic Optimality Criteria, Springer, New York, 1996.
  6. S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 1993.
  7. S. P. Meyn and R. L. Tweedie, Computable bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 4 (1994), 981-1011.
  8. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.
  9. A. S. Nowak, Existence of equilibrium stationary strategies in discounted noncooperative stochastic games with uncountable state space, J. Optim. Theory Appl. 45 (1985), 591-602.
  10. A. S. Nowak, A generalization of Ueno's inequality for n-step transition probabilities, Appl. Math. (Warsaw) 25 (1998), 295-299.
  11. A. S. Nowak and E. Altman, ε-Nash equilibria for stochastic games with uncountable state space and unbounded costs, technical report, Inst. Math., Wrocław Univ. of Technology, 1998 (submitted).
  12. A. S. Nowak and K. Szajowski, Nonzero-sum stochastic games, Ann. Dynamic Games 1999 (to appear).
  13. W. Whitt, Representation and approximation of noncooperative sequential games, SIAM J. Control Optim. 18 (1980), 33-48.
Pages:
221-228
Main language of publication
English
Received
1998-12-23
Accepted
1999-01-13
Published
1999
Exact and natural sciences