ArticleOriginal scientific text
Title
On approximations of nonzero-sum uniformly continuous ergodic stochastic games
Authors 1
Affiliations
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Abstract
We consider a class of uniformly ergodic nonzero-sum stochastic games with the expected average payoff criterion, a separable metric state space and compact metric action spaces. We assume that the payoff and transition probability functions are uniformly continuous. Our aim is to prove the existence of stationary ε-equilibria for that class of ergodic stochastic games. This theorem extends to a much wider class of stochastic games a result proven recently by Bielecki [2].
Keywords
Nash equilibrium, general state space, nonzero-sum Markov game, long run average reward criterion
Bibliography
- D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1979.
- T. R. Bielecki, Approximations of dynamic Nash games with general state and action spaces and ergodic costs for the players, Appl. Math. (Warsaw) 24 (1996), 195-202.
- E. B. Dynkin and A. A. Yushkevich, Controlled Markov Processes, Springer, New York, 1979.
- J. P. Georgin, Contrôle de chaînes de Markov sur des espaces arbitraires, Ann. Inst. H. Poincaré Sér. B 14 (1978), 255-277.
- O. Hernández-Lerma and J. B. Lasserre, Discrete Time Markov Control Pro- cesses: Basic Optimality Criteria, Springer, New York, 1996.
- S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 1993.
- S. P. Meyn and R. L. Tweedie, Computable bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 4 (1994), 981-1011.
- J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.
- A. S. Nowak, Existence of equilibrium stationary strategies in discounted noncooperative stochastic games with uncountable state space, J. Optim. Theory Appl. 45 (1985), 591-602.
- A. S. Nowak, A generalization of Ueno's inequality for n-step transition probabilities, Appl. Math. (Warsaw) 25 (1998), 295-299.
- A. S. Nowak and E. Altman, ε-Nash equilibria for stochastic games with uncountable state space and unbounded costs, technical report, Inst. Math., Wrocław Univ. of Technology, 1998 (submitted).
- A. S. Nowak and K. Szajowski, Nonzero-sum stochastic games, Ann. Dynamic Games 1999 (to appear).
- W. Whitt, Representation and approximation of noncooperative sequential games, SIAM J. Control Optim. 18 (1980), 33-48.