Universität Köln, Weyertal 86-90, D-50931 Köln, Germany
Bibliografia
[ADN] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundaryfor solutions of elliptic partial differential equations satisfying generalboundary conditions II, Comm. Pure Appl. Math. 7 (1964), 35-92.
[Aubin] T. Aubin, Nonlinear Analysis on Manifols. Monge-AmpèreEquations, Springer, New York, 1982.
[Beale1] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure Appl. Math. 34 (1981), 359-392.
[Beale2] J. T. Beale, Large time regularity of viscous surface waves,Arch. Rational Mech. Anal. 84 (1983/84), 307-352.
[GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983.
Kacur[] J. Kacur, Method of Rothe in Evolution Equations, Teubner,Leipzig, 1985.
[Lad] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985.
[L&M] J. L. Lions and E. Magenes, Nonhomogeneous Boundary ValueProblems and Applications, Springer, New York, 1972.
[Olej] O. A. Oleĭnik, Korn's type inequalities and applications to elasticity, preprint.
[Sol1] V. A. Solonnikov, Solvability of the problem of the motion of a viscous incompressible fluid bounded by a free surface, Izv. Akad. Nauk SSSR 41 (1977), 1388-1424 (in Russian).
[Sol2] V. A. Solonnikov, Solvability of the problem of evolution of an isolated volume of viscous incompressible capillary fluid, Zap. Nauchn. Sem. LOMI 140 (1984), 179-186 (in Russian).
[Sol3] V. A. Solonnikov, Unsteady motion of a finite mass of fluid,bounded by a free surface, ibid. 152 (1986), 137-157 (in Russian).
[Sol4] V. A. Solonnikov, Evolution of an isolated volume of aviscous incompressible capillary fluid for large time values,Vestnik Leningrad Univ. 1987, no. 3, 49-55.
[Sol5] V. A. Solonnikov, On a nonstationary motion of a finite massof a liquid bounded by a free surface, in: Lecture Notes Pure Appl. Math. 118, Dekker, 1989, 647-653.
[Sol&Shch] V. A. Solonnikov and V. E. Shchadilov, On a boundary value problem for the stationarysystem of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 (1973), 186-199.
[Sol&Tan] V. A. Solonnikov and A. Tani, A problem with free boundary for Navier-Stokes equations for a compressible fluid in the presence of surface tension, Zap. Nauchn. Sem. LOMI 182 (1990), 142-148 (in Russian).
[Tem] R. Temam, Navier-Stokes Equations, 2nd ed., North-Holland, 1979.
[ZZ1] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscousheat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170.
[ZZ2] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting fluids, Bull. Polish Acad. Sci. 42 (1994), 197-205.
[ZZ3] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for equations of aviscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math.61 (1995), 141-188.
[ZZ4] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting capillary fluids, Bull. Polish Acad. Sci. 43 (1995), 423-444.
[ZZ5] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundaryproblem for equations of a viscous compressible heat conducting fluid, Ann. Polon. Math. 63 (1996), 199-221.
[ZZ6] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for aviscous compressible heat conducting capillary fluid bounded by a free surface, ibid.
[ZZ7] E. Zadrzyńska and W. M. Zajączkowski, Local existence of solutions of a free boundaryproblem for equations of compressible viscous heat-conducting fluids, Appl. Math. (Warsaw) 25 (1998), 179-220.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv26i2p195bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.