ArticleOriginal scientific text
Title
Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory
Authors 1
Affiliations
- Institut des Sciences Exactes, Université 8 mai 1945, BP. 401, Guelma 24000, Algeria
Abstract
We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.
Keywords
global existence, boundedness, reaction-diffusion equations, large time behaviour
Bibliography
- N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differential Equations 33 (1979), 201-225.
- H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254.
- E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), 1-16.
- A. Haraux et M. Kirane, Estimations
pour des problèmes paraboliques semi-linéaires, Ann. Fac. Sci. Toulouse 5 (1983), 265-280. - D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, New York, 1981.
- H. Hoshino and Y. Yamada, Asymptotic behavior of global solutions for some reaction-diffusion equations, Funkcial. Ekvac. 34 (1991), 475-490.
- M. Kirane and A. Youkana, A reaction-diffusion system modelling the post irridiation oxydation of an isotactic polypropylene, Demonstratio Math. 23 (1990), 309-321.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, Berlin, 1984.
- D. Schmitt, Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse, Thèse de doctorat de l'Université Henri Poincaré, Nancy I, 1995.
- J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, Berlin, 1983.