ArticleOriginal scientific text
Title
Least-squares trigonometric regression estimation
Authors 1
Affiliations
- Department of Standards, Central Statistical Office, Al. Niepodległości 208, 00-925 Warszawa, Poland
Abstract
The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions , k=0,1,2,..., for the observation model , i=1,...,n, is considered, where are uncorrelated random variables with zero mean value and finite variance, and the observation points , i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error , the integrated mean-square error and the pointwise mean-square error of the estimator for f ∈ C[0,2π] and obtained by the least squares method are studied.
Keywords
consistent estimator, least squares method, Fourier coefficients, trigonometric polynomial, regression function
Bibliography
- B. Droge, On finite-sample properties of adaptive least-squares regression estimates, Statistics 24 (1993), 181-203.
- R. L. Eubank and P. Speckman, Convergence rates for trigonometric and polynomial-trigonometric regression estimators, Statist. Probab. Lett. 11 (1991), 119-124.
- T. Gasser, L. Sroka and C. Jennen-Steinmetz, Residual variance and residual pattern in nonlinear regression, Biometrika 73 (1986), 625-633.
- P. Hall, J. W. Kay and D. M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression, ibid. 77 (1990), 521-528.
- P. Hall and P. Patil, On wavelet methods for estimating smooth functions, J. Bernoulli Soc. 1 (1995), 41-58.
- G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966.
- C. L. Mallows, Some comments on
, Technometrics 15 (1973), 661-675. - E. Nadaraya, Limit distribution of the integrated squared error of trigonometric series regression estimator, Proc. Georgian Acad. Sci. Math. 1 (1993), 221-237.
- B. T. Polyak and A. B. Tsybakov, Asymptotic optimality of the
criterion in projection type estimation of regression functions, Teor. Veroyatnost. Primenen. 35 (1990), 305-317 (in Russian). - E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358.
- A. Zygmund, Trigonometrical Series, Dover, 1955.