ArticleOriginal scientific text

Title

Least-squares trigonometric regression estimation

Authors 1

Affiliations

  1. Department of Standards, Central Statistical Office, Al. Niepodległości 208, 00-925 Warszawa, Poland

Abstract

The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions ek, k=0,1,2,..., for the observation model yi=f(x)+ηi, i=1,...,n, is considered, where ηi are uncorrelated random variables with zero mean value and finite variance, and the observation points x[0,2π], i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error (1n)i=1nE(f(x)-wf^N(n)(x))2, the integrated mean-square error Ef-wf^N(n)2 and the pointwise mean-square error E(f(x)-wf^N(n)(x))2 of the estimator wf^N(n)(x)=k=0N(n)wc^kek(x) for f ∈ C[0,2π] and wc^0,wc^1,...,wc^N(n) obtained by the least squares method are studied.

Keywords

consistent estimator, least squares method, Fourier coefficients, trigonometric polynomial, regression function

Bibliography

  1. B. Droge, On finite-sample properties of adaptive least-squares regression estimates, Statistics 24 (1993), 181-203.
  2. R. L. Eubank and P. Speckman, Convergence rates for trigonometric and polynomial-trigonometric regression estimators, Statist. Probab. Lett. 11 (1991), 119-124.
  3. T. Gasser, L. Sroka and C. Jennen-Steinmetz, Residual variance and residual pattern in nonlinear regression, Biometrika 73 (1986), 625-633.
  4. P. Hall, J. W. Kay and D. M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression, ibid. 77 (1990), 521-528.
  5. P. Hall and P. Patil, On wavelet methods for estimating smooth functions, J. Bernoulli Soc. 1 (1995), 41-58.
  6. G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966.
  7. C. L. Mallows, Some comments on Cp, Technometrics 15 (1973), 661-675.
  8. E. Nadaraya, Limit distribution of the integrated squared error of trigonometric series regression estimator, Proc. Georgian Acad. Sci. Math. 1 (1993), 221-237.
  9. B. T. Polyak and A. B. Tsybakov, Asymptotic optimality of the Cp criterion in projection type estimation of regression functions, Teor. Veroyatnost. Primenen. 35 (1990), 305-317 (in Russian).
  10. E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358.
  11. A. Zygmund, Trigonometrical Series, Dover, 1955.
Pages:
121-131
Main language of publication
English
Received
1997-10-30
Accepted
1999-01-18
Published
1999
Exact and natural sciences