ArticleOriginal scientific text
Title
Multivariate negative binomial distributions generated by multivariate exponential distributions
Authors 1
Affiliations
- Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Abstract
We define a multivariate negative binomial distribution (MVNB) as a bivariate Poisson distribution function mixed with a multivariate exponential (MVE) distribution. We focus on the class of MVNB distributions generated by Marshall-Olkin MVE distributions. For simplicity of notation we analyze in detail the class of bivariate (BVNB) distributions. In applications the standard data from [2] and [7] and data concerning parasites of birds from [4] are used.
Keywords
bivariate geometrical distribution, multivariate exponential distribution, multivariate negative binomial distribution
Bibliography
- G. E. Bates and J. Neyman, Contributions to the theory of accident proneness, I. An optimistic model of the correlation between light and severe accidents, Univ. Calif. Publ. Statist. 1 (1952), 215-254.
- C. B. Edwards and J. Gurland, A class of distributions applicable to accidents, J. Amer. Statist. Assoc. 56 (1961), 503-517.
- I. Kopocińska, B. Kopociński and A. Okulewicz, Mixed negative binomial distributions in analysis of the number of parasitic nematodes in blackbird (Turdus merula L.), in: Proceedings of Third National Conference on Applications of Mathematics to Biology and Medicine (Mądralin, 1997), 25-31.
- B. Kopociński, E. Lonc and M. Modrzejewska, Fitting a modified binomial model, to distribution of avian lice Phthiraptea: Mellophaga) parasiting on pheasant Phasianus colchicus L.), Acta Parasitologica 43 (1988), 81-85.
- E. Lonc, A. Okulewicz and I. Kopocińska, Estimation of distribution parameters of some avian parasites, Wiad. Parazytol. 43 (1997), 185-193.
- A. W. Marshall and I. Olkin, A multivariate exponential distribution, J. Amer. Statist. Assoc. 62 (1967), 30-44.
- K. Subrahmaniam and K. Subrahmaniam, On the estimation of the parameters in the bivariate negative binomial distribution, J. Roy. Statist. Soc. 35 (1973), 131-146.