ArticleOriginal scientific text

Title

Multivariate negative binomial distributions generated by multivariate exponential distributions

Authors 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

We define a multivariate negative binomial distribution (MVNB) as a bivariate Poisson distribution function mixed with a multivariate exponential (MVE) distribution. We focus on the class of MVNB distributions generated by Marshall-Olkin MVE distributions. For simplicity of notation we analyze in detail the class of bivariate (BVNB) distributions. In applications the standard data from [2] and [7] and data concerning parasites of birds from [4] are used.

Keywords

bivariate geometrical distribution, multivariate exponential distribution, multivariate negative binomial distribution

Bibliography

  1. G. E. Bates and J. Neyman, Contributions to the theory of accident proneness, I. An optimistic model of the correlation between light and severe accidents, Univ. Calif. Publ. Statist. 1 (1952), 215-254.
  2. C. B. Edwards and J. Gurland, A class of distributions applicable to accidents, J. Amer. Statist. Assoc. 56 (1961), 503-517.
  3. I. Kopocińska, B. Kopociński and A. Okulewicz, Mixed negative binomial distributions in analysis of the number of parasitic nematodes in blackbird (Turdus merula L.), in: Proceedings of Third National Conference on Applications of Mathematics to Biology and Medicine (Mądralin, 1997), 25-31.
  4. B. Kopociński, E. Lonc and M. Modrzejewska, Fitting a modified binomial model, to distribution of avian lice Phthiraptea: Mellophaga) parasiting on pheasant Phasianus colchicus L.), Acta Parasitologica 43 (1988), 81-85.
  5. E. Lonc, A. Okulewicz and I. Kopocińska, Estimation of distribution parameters of some avian parasites, Wiad. Parazytol. 43 (1997), 185-193.
  6. A. W. Marshall and I. Olkin, A multivariate exponential distribution, J. Amer. Statist. Assoc. 62 (1967), 30-44.
  7. K. Subrahmaniam and K. Subrahmaniam, On the estimation of the parameters in the bivariate negative binomial distribution, J. Roy. Statist. Soc. 35 (1973), 131-146.
Pages:
463-472
Main language of publication
English
Received
1998-04-29
Published
1999
Exact and natural sciences