PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998-1999 | 25 | 4 | 449-455
Tytuł artykułu

Smoothness of unordered curves in two-dimensional strongly competitive systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is known that in two-dimensional systems of ODEs of the form $\dotx^i=x^if^i(x)$ with ${\partial f^i}/{\partial x^j} < 0$ (strongly competitive systems), boundaries of the basins of repulsion of equilibria consist of invariant Lipschitz curves, unordered with respect to the coordinatewise (partial) order. We prove that such curves are in fact of class $C^1$.
Rocznik
Tom
25
Numer
4
Strony
449-455
Opis fizyczny
Daty
wydano
1999
otrzymano
1998-02-20
Twórcy
  • Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] M. Benaïm, On invariant hypersurfaces of strongly monotone maps, J. Differential Equations 137 (1997), 302-319.
  • [2] P. Brunovský, Controlling nonuniqueness of local invariant manifolds, J. Reine Angew. Math. 446 (1994), 115-135.
  • [3] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
  • [4] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets, SIAM J. Math. Anal. 13 (1982), 167-179.
  • [5] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere, ibid. 16 (1985), 423-439.
  • [6] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity 1 (1988), 51-71.
  • [7] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, London Math. Soc. Stud. Texts 7, Cambridge Univ. Press, Cambridge, 1988.
  • [8] M. S. Holtz, The topological classification of two dimensional cooperative and competitive systems, Ph.D. dissertation, Univ. of California, Berkeley, 1987.
  • [9] A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations 3 (1967), 546-570; reprinted as Appendix C in the book: R. Abraham and J. W. Robbin, Transversal Mappings and Flows, Benjamin, New York, 1967, 134-154.
  • [10] J. Mierczyński, The $C^1$ property of carrying simplices for a class of competitive systems of ODEs, J. Differential Equations 111 (1994), 385-409.
  • [11] J. Mierczyński, On smoothness of carrying simplices, Proc. Amer. Math. Soc. 127 (1999), 543-551.
  • [12] J. Mierczyński, Smoothness of carrying simplices for three-dimensional competitive systems: A counterexample, Dynam. Contin. Discrete Impuls. Systems, in press.
  • [13] J. Palis and F. Takens, Topological equivalence of normally hyperbolic dynamical systems, Topology 16 (1977), 335-345.
  • [14] E. Seneta, Non-negative Matrices and Markov Chains, 2nd ed., Springer Ser. Statist., Springer, New York, 1981.
  • [15] P. Takáč, Convergence to equilibrium on invariant d-hypersurfaces for strongly increasing discrete-time semigroups, J. Math. Anal. Appl. 148 (1990), 223-244.
  • [16] P. Takáč, Domains of attraction of generic ω-limit sets for strongly monotone discrete-time semigroups, J. Reine Angew. Math. 423 (1992), 101-173.
  • [17] I. Tereščák, Dynamics of $C^1$ smooth strongly monotone discrete-time dynamical systems, preprint.
  • [18] E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems, in: Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math. 152, Dekker, New York, 1994, 353-364.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv25i4p449bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.