ArticleOriginal scientific textRegularity of the multidimensional scaling functions: estimation of the
Title
Regularity of the multidimensional scaling functions: estimation of the -Sobolev exponent
Authors 1
Affiliations
- Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland
Abstract
The relationship between the spectral properties of the transfer operator corresponding to a wavelet refinement equation and the -Sobolev regularity of solution for the equation is established.
Keywords
Bibliography
- N. K. Bari, Trigonometric Series, Fizmatgiz, 1961 (in Russian).
- A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Rev. Mat. Iberoamericana 12 (1996), 527-591.
- A. Cohen and R. D. Ryan, Wavelets and Multiscale Signal Processing, Appl. Math. Math. Comput. 11, Chapman & Hall, 1995.
- I. Daubechies and J. Lagarias, Two-scale difference equation I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1388-1410.
- I. Daubechies and J. Lagarias, Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals, ibid. 23 (1992), 1031-1079.
- K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
- T. Eriola, Sobolev characterization of solution of dilation equations, SIAM J. Math. Anal. 23 (1992), 1015-1030.
- C. Heil and D. Colella, Sobolev regularity for refinement equations via ergodic theory, in: C. K. Chui and L. L. Schumaker (eds.), Approximation Theory VIII, Vol. 2, World Sci., 1995, 151-158.
- P. N. Heller and R. O. Wells Jr., The spectral theory of multiresolution operators and applications, in: Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L. Montefusco and L. Puccio (eds.), Wavelets 5, Academic Press, 1994, 13-31.
- L. Hervé, Construction et régularité des fonctions d'échelle, SIAM J. Math. Anal. 26 (1995), 1361-1385.
- J. Kotowicz, On existence of a compactly supported
solution for two-dimensional two-scale dilation equations, Appl. Math. (Warsaw) 24 (1997), 325-334. - K. S. Lau and J. Wang, Characterization of
-solutions for the two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), 1018-1048. - C. A. Micchelli and H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841-870.
- O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal. 23 (1992), 1544-1576.
- N. A. Sadovnichiĭ, Theory of Operators, Moscow Univ. Press, 1979 (in Russian).
- L. Villemoes, Energy moments in time and frequency for
-scale dilation equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), 1519-1543.