ArticleOriginal scientific text

Title

Regularity of the multidimensional scaling functions: estimation of the Lp-Sobolev exponent

Authors 1

Affiliations

  1. Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland

Abstract

The relationship between the spectral properties of the transfer operator corresponding to a wavelet refinement equation and the Lp-Sobolev regularity of solution for the equation is established.

Keywords

Lp-Sobolev exponent, transfer operator, refinement equation, scaling functions, spectral radius

Bibliography

  1. N. K. Bari, Trigonometric Series, Fizmatgiz, 1961 (in Russian).
  2. A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Rev. Mat. Iberoamericana 12 (1996), 527-591.
  3. A. Cohen and R. D. Ryan, Wavelets and Multiscale Signal Processing, Appl. Math. Math. Comput. 11, Chapman & Hall, 1995.
  4. I. Daubechies and J. Lagarias, Two-scale difference equation I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1388-1410.
  5. I. Daubechies and J. Lagarias, Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals, ibid. 23 (1992), 1031-1079.
  6. K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
  7. T. Eriola, Sobolev characterization of solution of dilation equations, SIAM J. Math. Anal. 23 (1992), 1015-1030.
  8. C. Heil and D. Colella, Sobolev regularity for refinement equations via ergodic theory, in: C. K. Chui and L. L. Schumaker (eds.), Approximation Theory VIII, Vol. 2, World Sci., 1995, 151-158.
  9. P. N. Heller and R. O. Wells Jr., The spectral theory of multiresolution operators and applications, in: Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L. Montefusco and L. Puccio (eds.), Wavelets 5, Academic Press, 1994, 13-31.
  10. L. Hervé, Construction et régularité des fonctions d'échelle, SIAM J. Math. Anal. 26 (1995), 1361-1385.
  11. J. Kotowicz, On existence of a compactly supported Lp solution for two-dimensional two-scale dilation equations, Appl. Math. (Warsaw) 24 (1997), 325-334.
  12. K. S. Lau and J. Wang, Characterization of Lp-solutions for the two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), 1018-1048.
  13. C. A. Micchelli and H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841-870.
  14. O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal. 23 (1992), 1544-1576.
  15. N. A. Sadovnichiĭ, Theory of Operators, Moscow Univ. Press, 1979 (in Russian).
  16. L. Villemoes, Energy moments in time and frequency for 2-scale dilation equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), 1519-1543.
Pages:
431-447
Main language of publication
English
Received
1997-11-18
Accepted
1998-03-06
Published
1999
Exact and natural sciences