ArticleOriginal scientific text

Title

Poincaré-Melnikov theory for n-dimensional diffeomorphisms

Authors 1, 2

Affiliations

  1. Facultat d'informàtica, Escoles Universitàries Gimbernat, Vial Interpolar del Vallès, s/n, 08190 St Cugat del Vallès, Spain
  2. Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona , Gran Via, 585, 08007 Barcelona, Spain

Abstract

We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.

Keywords

Melnikov function, splitting of separatrices, homoclinic solutions

Bibliography

  1. N. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
  2. V. I. Arnold, Instability of dynamical systems with several degrees of freedom, Soviet Math. Dokl. 5 (1964), 581-585.
  3. T. Bountis, A. Goriely and M. Kollmann, A Melnikov vector for N-dimensional mappings, Phys. Lett. A 206 (1995), 38-48.
  4. S. N. Chow, J. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations 37 (1980), 351-373.
  5. A. Delshams and R. Ramírez-Ros, Poincaré-Melnikov-Arnold method for analytic planar maps, Nonlinearity 9 (1996), 1-26.
  6. A. Delshams and R. Ramírez-Ros, Melnikov potential for exact symplectic maps, preprint, 1996.
  7. R. W. Easton, Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas, Nonlinear Anal. 8 (1984), 1-4.
  8. N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971), 193-226.
  9. J. M. Gambaudo, Perturbation de l'application temps τ' d'un champ de vecteurs intégrable de R2, C. R. Acad. Sci. Paris 297 (1987), 245-248.
  10. M. Glasser, V. G. Papageorgiu and T. C. Bountis, Melnikov's function for two-dimensional mappings, SIAM J. Appl. Math. 49 (1989), 692-703.
  11. J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Sys- tems, and Bifurcations of Vector Fields, Springer, New York, 1983.
  12. M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, New York, 1977.
  13. H. E. Lomelí, Transversal heteroclinic orbits for perturbed billiards, preprint, 1994.
  14. V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963), 3-56.
  15. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1882-1899.
  16. J. H. Sun, Transversal homoclinic points for high-dimensional maps, preprint, 1994.
  17. S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer, New York, 1988.
Pages:
129-152
Main language of publication
English
Received
1996-06-24
Published
1998
Exact and natural sciences