PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998-1999 | 25 | 2 | 129-152
Tytuł artykułu

Poincaré-Melnikov theory for n-dimensional diffeomorphisms

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.
Rocznik
Tom
25
Numer
2
Strony
129-152
Opis fizyczny
Daty
wydano
1998
otrzymano
1996-06-24
Twórcy
autor
  • Facultat d'informàtica, Escoles Universitàries Gimbernat, Vial Interpolar del Vallès, s/n, 08190 St Cugat del Vallès, Spain
autor
  • Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona , Gran Via, 585, 08007 Barcelona, Spain
Bibliografia
  • [1] N. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
  • [2] V. I. Arnold, Instability of dynamical systems with several degrees of freedom, Soviet Math. Dokl. 5 (1964), 581-585.
  • [3] T. Bountis, A. Goriely and M. Kollmann, A Melnikov vector for N-dimensional mappings, Phys. Lett. A 206 (1995), 38-48.
  • [4] S. N. Chow, J. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations 37 (1980), 351-373.
  • [5] A. Delshams and R. Ramírez-Ros, Poincaré-Melnikov-Arnold method for analytic planar maps, Nonlinearity 9 (1996), 1-26.
  • [6] A. Delshams and R. Ramírez-Ros, Melnikov potential for exact symplectic maps, preprint, 1996.
  • [7] R. W. Easton, Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas, Nonlinear Anal. 8 (1984), 1-4.
  • [8] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971), 193-226.
  • [9] J. M. Gambaudo, Perturbation de l'application temps τ' d'un champ de vecteurs intégrable de $R^2$, C. R. Acad. Sci. Paris 297 (1987), 245-248.
  • [10] M. Glasser, V. G. Papageorgiu and T. C. Bountis, Melnikov's function for two-dimensional mappings, SIAM J. Appl. Math. 49 (1989), 692-703.
  • [11] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Sys- tems, and Bifurcations of Vector Fields, Springer, New York, 1983.
  • [12] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, New York, 1977.
  • [13] H. E. Lomelí, Transversal heteroclinic orbits for perturbed billiards, preprint, 1994.
  • [14] V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963), 3-56.
  • [15] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1882-1899.
  • [16] J. H. Sun, Transversal homoclinic points for high-dimensional maps, preprint, 1994.
  • [17] S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer, New York, 1988.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv25i2p129bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.