ArticleOriginal scientific text
Title
Information inequalities for the minimax risk of sequential estimators (with applications)
Authors 1, 1
Affiliations
- Institute of Mathematics Technical University of Łódź, ul. Żwirki 36, 90-924 Łódź, Poland
Abstract
Information inequalities for the minimax risk of sequential estimators are derived in the case where the loss is measured by the squared error of estimation plus a linear functional of the number of observations. The results are applied to construct minimax sequential estimators of: the failure rate in an exponential model with censored data, the expected proportion of uncensored observations in the proportional hazards model, the odds ratio in a binomial distribution and the expectation of exponential type random variables.
Keywords
odds ratio, information inequalities, censored data, minimax estimation, proportional hazard model
Bibliography
- M. Alvo (1977), Bayesian sequential estimation, Ann. Statist. 5, 955-968.
- Y. S. Chow, H. Robbins and D. Siegmund (1971), Great Expectations: The Theory of Optimal Stopping, Houghton Mifflin, Boston.
- S. Csörgő (1988), Estimation in the proportional hazards model of random censorship, Statistics 19, 437-463.
- S. Csörgő and J. Mielniczuk (1988), Density estimation in the simple proportional hazards model, Statist. Probab. Letters 6, 419-426.
- L. Gajek (1987), An improper Cramér-Rao lower bound, Zastos. Mat. 19, 241-256.
- L. Gajek (1988), On minimax value in the scale model with truncated data, Ann. Statist. 16, 669-677.
- L. Gajek and U. Gather (1991), Estimating a scale parameter under censorship, Statistics 22, 529-549.
- J. C. Gardiner and V. Susarla (1984), Risk-efficient estimation of the mean exponential survival time under random censoring, Proc. Nat. Acad. Sci. U.S.A. 81, 5906-5909.
- J. C. Gardiner and V. Susarla (1991), Some asymptotic distribution results in time-sequential estimation of the mean exponential survival time, Canad. J. Statist. 19, 425-436.
- J. C. Gardiner, V. Susarla and J. van Ryzin (1986), Time sequential estimation of the exponential mean under random withdrawals, Ann. Statist. 14, 607-618.
- J. A. Koziol and S. B. Green (1976), A Cramér-von Mises statistic for randomly censored data, Biometrika 63, 465-474.
- E. L. Lehmann (1983), Theory of Point Estimation, Wiley, New York.
- R. Magiera (1977), On sequential minimax estimation for the exponential class of processes, Zastos. Mat. 15, 445-454.
- B. Mizera (1996), Lower bounds on the minimax risk of sequential estimators, Statistics 28, 123-129.
- W. Rudin (1976), Principles of Mathematical Analysis, McGraw-Hill, New York.
- M. Tahir (1988), Asymptotically optimal Bayesian sequential point estimation with censored data, Sequential Anal. 7, 227-237.
- J. Wolfowitz (1947), The efficiency of sequential estimates and Wald's equation for sequential processes, Ann. Math. Statist. 19, 215-230.
- M. Woodroofe (1982), Nonlinear Renewal Theory in Sequential Analysis, CBMS-NSF Regional Conf. Ser. Appl. Math. 39, SIAM, Philadelphia.