ArticleOriginal scientific text
Title
Consistency of trigonometric and polynomial regression estimators
Authors 1
Affiliations
- Department of Standards, Central Statistical Office, Al. Niepodległości 208, 00-925 Warszawa, Poland
Abstract
The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials , k=0,1,..., for the observation model , i=1,...,n, where the are independent random variables with zero mean value and finite variance, and the observation points , i=1,...,n, form a random sample from a distribution with density . Sufficient and necessary conditions are obtained for consistency in the sense of the errors , , and of the projection estimator for determined by the least squares method and .
Keywords
consistent estimator, orthonormal system, least squares method, regression
Bibliography
- R. L. Eubank and B. R. Jayasuriya, The asymptotic average square error for polynomial regression, Statistics 24 (1993), 311-319.
- J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, London, 1996.
- A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conf. on Neural Networks, San Diego, Calif., IEEE Press, New York, 1988, 657-664.
- G. G. Lorentz, Approximation of Functions, Holt, Reinehart and Winston, New York, 1966.
- G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687.
- G. V. Milovanovič, D. S. Mitrinovič and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
- W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102.
- W. Popiński, On Fourier coefficient estimators consistent in the mean-square sense, ibid., 275-284.
- E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358.
- G. Sansone, Orthogonal Functions, Interscience Publ., New York, 1959.