ArticleOriginal scientific text

Title

Consistency of trigonometric and polynomial regression estimators

Authors 1

Affiliations

  1. Department of Standards, Central Statistical Office, Al. Niepodległości 208, 00-925 Warszawa, Poland

Abstract

The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials ek, k=0,1,..., for the observation model yi=f(xi)+ηi, i=1,...,n, where the ηi are independent random variables with zero mean value and finite variance, and the observation points xi[a,b], i=1,...,n, form a random sample from a distribution with density ϱL1[a,b]. Sufficient and necessary conditions are obtained for consistency in the sense of the errors Vertf-wf^NVert,vertf(x)-wf^N(x)vert, x[a,b], and EVertf-wf^NVert2 of the projection estimator wf^N(x)=k=0Nwc^kek(x) for wc^0,wc^1,...,wc^N determined by the least squares method and fL2[a,b].

Keywords

consistent estimator, orthonormal system, least squares method, regression

Bibliography

  1. R. L. Eubank and B. R. Jayasuriya, The asymptotic average square error for polynomial regression, Statistics 24 (1993), 311-319.
  2. J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, London, 1996.
  3. A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conf. on Neural Networks, San Diego, Calif., IEEE Press, New York, 1988, 657-664.
  4. G. G. Lorentz, Approximation of Functions, Holt, Reinehart and Winston, New York, 1966.
  5. G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687.
  6. G. V. Milovanovič, D. S. Mitrinovič and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
  7. W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102.
  8. W. Popiński, On Fourier coefficient estimators consistent in the mean-square sense, ibid., 275-284.
  9. E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358.
  10. G. Sansone, Orthogonal Functions, Interscience Publ., New York, 1959.
Pages:
73-83
Main language of publication
English
Received
1997-01-22
Accepted
1997-05-23
Published
1998
Exact and natural sciences