We present conditions sufficient for the weak convergence to a compound Poisson distribution of the distributions of the kth order statistics for extremes of moving minima in arrays of independent random variables.
Institute of Mathematics, Technical University of Kielce, Tysiąclecia PP 7, 25-314 Kielce, Poland
Bibliografia
[1] A. D. Barbour, L. H. Y. Chen and W. L. Loh, Compound Poisson approximation for nonnegative random variables via Stein's method, Ann. Probab. 20 (1992), 1843-1866.
[2] E. R. Canfield and W. P. McCormick, Asymptotic reliability of consecutive k-out-of-n systems, J. Appl. Probab. 29 (1992), 142-155.
[3] O. Chryssaphinou and S. G. Papastavridis, Limit distribution for a consecutive k-out-of-n: F system, Adv. Appl. Probab. 22 (1990), 491-493.
[4] J. Dudkiewicz, Asymptotic of extremes of moving minima in arrays of independent random variables, Demonstratio Math. 29 (1996), 715-721.
[5] S. G. Papastavridis, A limit theorem for the reliability of a consecutive-k-out-of-n system, Adv. Appl. Probab. 19 (1987), 746-748.
[6] R. J. Serfling, A general Poisson approximation theorem, Ann. Probab. 3 (1975), 726-731.
[7] A. M. Zubkov, Estimates for sums of finitely dependent indicators and for the time of first occurrence of a rare event, Probabilistic Problems of Discrete Mathematics, Trudy Mat. Inst. Steklov. 177 (1986), 33-46, 207 (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv25i1p19bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.