Department of Mathematics, Harbin Normal University, Harbin 150080, China
Bibliografia
[1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.
[2] H. P. Benson, An improved definition of proper efficiency for vector minimization with respect to cones, J. Math. Anal. Appl. 71 (1979), 232-241.
[3] G. R. Bitran and T. L. Magnanti, The structure of admissible points with respect to cone dominance, J. Optim. Theory Appl. 29 (1979), 573-614.
[4] J. M. Borwein, The geometry of Pareto efficiency over cones Math. Oper. Statist. Ser. Optim. 11 (1980), 235-248.
[5] J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization, Trans. Amer. Math. Soc. 338 (1993), 105-122.
[6] X. H. Gong, Connectedness of efficient solution sets for set-valued maps in normed spaces, J. Optim. Theory Appl. 83 (1994), 83-96.
[7] X. H. Gong, Connectedness of the efficient solution set of a convex vector optimization in normed spaces, Nonlinear Anal. 23 (1994), 1105-1114.
[8] X. H. Gong, Connectedness of super efficient solution sets for set-valued maps in Banach spaces, Math. Methods Oper. Res. 44 (1996), 135-145.
[9] A. Guerraggio, E. Molho and A. Zafferoni, On the notion of proper efficiency in vector optimization, J. Optim. Theory Appl. 82 (1994), 1-21.
[10] R. Hartley, On cone efficiency, cone convexity and cone compactness, SIAM J. Appl. Math. 34 (1978), 211-222.
[11] J.-B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407-422.
[12] Y. D. Hu and E. J. Sun, Connectedness of the efficient point set in strictly quasiconcave vector maximization, J. Optim. Theory Appl. 78 (1993), 613-622.
[13] J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Lang, Frankfurt, 1986.
[14] B. L. Lin, P. K. Lin and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
[15] D. T. Luc, Theory of Vector Optimization, Springer, 1989.
[16] D. T. Luc, Contractibility of efficient points sets in normed spaces, Nonlinear Anal. 15 (1990), 527-535.
[17] E. K. Makarov and N. N. Rachkovski, Density theorems for generalized Henig proper efficiency, J. Optim. Theory Appl. 91 (1996), 419-437.
[18] P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization, ibid. 25 (1978), 459-467.
[19] J. W. Nieuwenhuis, Some results about nondominated solutions, ibid. 36 (1982), 289-310.
[20] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
[21] W. Song, A note on connectivity of efficient point sets, Arch. Math. (Basel) 65 (1995), 540-545.
[22] W. Song, Connectivity of efficient solution sets in vector optimization of set-valued mappings, Optimization 39 (1997), 1-11.
[23] A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives, J. Optim. Theory Appl. 40 (1983), 537-557.
[24] P. L. Yu, Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives, ibid. 14 (1974), 319-377.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv25i1p121bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.