PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998-1999 | 25 | 1 | 121-127
Tytuł artykułu

On the connectivity of efficient point sets

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The connectivity of the efficient point set and of some proper efficient point sets in locally convex spaces is investigated.
Rocznik
Tom
25
Numer
1
Strony
121-127
Opis fizyczny
Daty
wydano
1998
otrzymano
1997-06-16
poprawiono
1997-10-20
Twórcy
autor
  • Department of Mathematics, Harbin Normal University, Harbin 150080, China
Bibliografia
  • [1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.
  • [2] H. P. Benson, An improved definition of proper efficiency for vector minimization with respect to cones, J. Math. Anal. Appl. 71 (1979), 232-241.
  • [3] G. R. Bitran and T. L. Magnanti, The structure of admissible points with respect to cone dominance, J. Optim. Theory Appl. 29 (1979), 573-614.
  • [4] J. M. Borwein, The geometry of Pareto efficiency over cones Math. Oper. Statist. Ser. Optim. 11 (1980), 235-248.
  • [5] J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization, Trans. Amer. Math. Soc. 338 (1993), 105-122.
  • [6] X. H. Gong, Connectedness of efficient solution sets for set-valued maps in normed spaces, J. Optim. Theory Appl. 83 (1994), 83-96.
  • [7] X. H. Gong, Connectedness of the efficient solution set of a convex vector optimization in normed spaces, Nonlinear Anal. 23 (1994), 1105-1114.
  • [8] X. H. Gong, Connectedness of super efficient solution sets for set-valued maps in Banach spaces, Math. Methods Oper. Res. 44 (1996), 135-145.
  • [9] A. Guerraggio, E. Molho and A. Zafferoni, On the notion of proper efficiency in vector optimization, J. Optim. Theory Appl. 82 (1994), 1-21.
  • [10] R. Hartley, On cone efficiency, cone convexity and cone compactness, SIAM J. Appl. Math. 34 (1978), 211-222.
  • [11] J.-B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407-422.
  • [12] Y. D. Hu and E. J. Sun, Connectedness of the efficient point set in strictly quasiconcave vector maximization, J. Optim. Theory Appl. 78 (1993), 613-622.
  • [13] J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Lang, Frankfurt, 1986.
  • [14] B. L. Lin, P. K. Lin and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
  • [15] D. T. Luc, Theory of Vector Optimization, Springer, 1989.
  • [16] D. T. Luc, Contractibility of efficient points sets in normed spaces, Nonlinear Anal. 15 (1990), 527-535.
  • [17] E. K. Makarov and N. N. Rachkovski, Density theorems for generalized Henig proper efficiency, J. Optim. Theory Appl. 91 (1996), 419-437.
  • [18] P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization, ibid. 25 (1978), 459-467.
  • [19] J. W. Nieuwenhuis, Some results about nondominated solutions, ibid. 36 (1982), 289-310.
  • [20] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
  • [21] W. Song, A note on connectivity of efficient point sets, Arch. Math. (Basel) 65 (1995), 540-545.
  • [22] W. Song, Connectivity of efficient solution sets in vector optimization of set-valued mappings, Optimization 39 (1997), 1-11.
  • [23] A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives, J. Optim. Theory Appl. 40 (1983), 537-557.
  • [24] P. L. Yu, Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives, ibid. 14 (1974), 319-377.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv25i1p121bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.