ArticleOriginal scientific text

Title

Option pricing in the CRR model with proportional transaction costs: a cone transformation approach

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Abstract

Option pricing in the Cox-Ross-Rubinstein model with transaction costs is studied. Using a cone transformation approach a complete characterization of perfectly hedged options is given.

Keywords

transaction costs, replicating cost, binomial model, hedging, option

Bibliography

  1. [BLPS] B. Bensaid, J. P. Lesne, H. Pagès and J. Scheinkman, Derivative asset pricing with transaction costs, Math. Finance 2 (1992), 63-83.
  2. [BV] P. P. Boyle and T. Vorst, Option replication in discrete time with transaction costs, J. Finance 47 (1992), 271-293.
  3. [CRR] J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financial Econom. 7 (1979), 229-263.
  4. [CK] J. Cvitanić and I. Karatzas, Hedging and portfolio optimization under transaction costs: A martingale approach, Math. Finance 6 (1996), 133-165.
  5. [DC] M. H. A. Davis and J. M. C. Clark, A note on super-replicating strategies, Philos. Trans. Roy. Soc. London Ser. A 347 (1994), 485-494.
  6. [ENU] C. Edirisinghe, V. Naik and R. Uppal, Optimal replication with transaction costs and trading restrictions, J. Financial Quant. Anal. 28 (1993), 117-138.
  7. [MV] F. Mercurio and T. C. F. Vorst, Option pricing and hedging in discrete time with transaction costs and incomplete markets, preprint.
  8. [MS] M. Motoczyński and Ł. Stettner, On option pricing in the multidimensional Cox-Ross-Rubinstein model, Appl. Math. (Warsaw), to appear.
  9. [R] M. Rutkowski, Optimality of replicating strategies in the CCR model with proportional transaction costs, ibid., to appear.
  10. [SSC] H. M. Soner, S. E. Schreve and J. Cvitanić, There is no nontrivial portfolio for option pricing with transaction costs, Ann. Appl. Probab. 5 (1995), 327-355.
  11. [SKKM] I. Shiryaev, Yu. M. Kabanov, D. O. Kramkov and A. V. Melnikov, On the theory of pricing of European and American options, I: Discrete time, Teor. Veroyatnost. i Primenen. 39 (1994), 23-79 (in Russian).
  12. [TZ] G. Tessitore and J. Zabczyk, Pricing options for multinomial models, Bull. Polish Acad. Sci. Math. 44 (1996), 363-380.
Pages:
475-514
Main language of publication
English
Received
1997-03-17
Accepted
1997-05-12
Published
1997
Exact and natural sciences