ArticleOriginal scientific text

Title

Point derivations for Lipschitz functions andClarke's generalized derivative

Authors 1, 2

Affiliations

  1. Department of Applied Mathematics, St. Petersburg State University, 198904 Stary Peterhof, Russia
  2. Institut für Statistik und, Mathematische Wirtschaftstheorie, Universität Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe, Germany

Abstract

Clarke's generalized derivative f0(x,v) is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed xX and fixed vE the function f0(x,v) is continuous and sublinear in fLip(X,d). It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz's product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.

Keywords

point derivations, generalized directional derivative, Lipschitz functions

Bibliography

  1. R. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403.
  2. F. H. Clarke, Optimization and Nonsmooth Analysis, CRM, Université de Montréal, 1989.
  3. N. Dunford and J. T. Schwartz, Linear Operators: Part I, Interscience Publ. New York, 1957.
  4. L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186.
  5. D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.
  6. I. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
Pages:
465-474
Main language of publication
English
Received
1997-03-09
Published
1997
Exact and natural sciences