ArticleOriginal scientific text
Title
Point derivations for Lipschitz functions andClarke's generalized derivative
Authors 1, 2
Affiliations
- Department of Applied Mathematics, St. Petersburg State University, 198904 Stary Peterhof, Russia
- Institut für Statistik und, Mathematische Wirtschaftstheorie, Universität Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe, Germany
Abstract
Clarke's generalized derivative is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed and fixed the function is continuous and sublinear in . It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz's product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.
Keywords
point derivations, generalized directional derivative, Lipschitz functions
Bibliography
- R. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403.
- F. H. Clarke, Optimization and Nonsmooth Analysis, CRM, Université de Montréal, 1989.
- N. Dunford and J. T. Schwartz, Linear Operators: Part I, Interscience Publ. New York, 1957.
- L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186.
- D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.
- I. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.