ArticleOriginal scientific text

Title

Statistical estimation of higher-order spectral densities by means of general tapering

Authors 1

Affiliations

  1. UFR des Sciences-Mathématiques, URA CNRS 1378, site Colbert, Université de Rouen, 76821 Mont Saint Aignan Cedex, France

Abstract

Given a realization on a finite interval of a continuous-time stationary process, we construct estimators for higher order spectral densities. Tapering and shift-in-time methods are used to build estimators which are asymptotically unbiased and consistent for all admissible values of the argument. Asymptotic results for the fourth-order densities are given. Detailed attention is paid to the nth order case.

Keywords

shift-in-time, higher-order spectral densities, cumulant, admissible values, indecomposable partitions, stochastic processes, product moment, tapering, characteristic number

Bibliography

  1. M. Baba Harra, Estimation de densités spectrales d'ordre quatre avec lissage quelconque, Publication de l'URA 1378 Analyse et Modèles Stochastiques 2 (1995), 1-38.
  2. M. Baba Harra, Estimation de densités spectrales d'ordre élevé, PhD thesis, Université de Rouen, 1996.
  3. A. Blanc-Lapierre et R. Fortet, Théorie des Fonctions Aléatoires, Masson, Paris, 1953.
  4. P. Bloomfield, Fourier Analysis of Time Series: An Introduction, Wiley, New York, 1976.
  5. D. R. Brillinger, An introduction to polyspectra, Ann. Math. Statist. 36 (1965), 1351-1374.
  6. D. R. Brillinger, Time Series: Data Analysis and Theory, Holt, Rinehart and Winston, New York, 1975.
  7. D. R. Brillinger, The 1983 Wald memorial lectures: Some statistical methods for random process data from seismology and neurophysiology, Ann. Statist. 16 (1988), 1-54.
  8. D. R. Brillinger and M. Rosenblatt, Asymptotic theory of estimates of k-th order spectra, in: B. Harris (ed.), Advanced Seminar on Spectral Analysis of Time Series, Wiley, New York, 1967, 153-231.
  9. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297-301.
  10. R. Dahlhaus, Spectral analysis with tapered data, J. Time Ser. Anal. 4 (1983), 163-175.
  11. R. Dahlhaus, Nonparametric spectral analysis with missing observations, Sankhyā 3 (1987), 347-367.
  12. S. Elgar and V. Chandran, Higher order spectral analysis of Chua's circuit, IEEE Trans. Circuit Systems, 40 (1993), 689-692.
  13. U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series, Wiley, New York, 1957.
  14. G. A. Isakova, Estimation spectrale d'ordre élevé pour les processus stationnaires avec lissage gaussien, C. R. l'Acad. Sci. République Sov. Biélorussie 3 (1989), 3-9.
  15. R. H. Jones, Spectral analysis with regularly missed observations, Ann. Math. Statist. 33 (1962), 455-461.
  16. P. T. Kim, Estimation of product moments of a stationary stochastic process with application to estimation of cumulants and cumulant spectral densities, Canad. J. Statist. 17 (1989), 285-299.
  17. L. H. Koopmans, The Spectral Analysis of Time Series, Academic Press, New York, 1974.
  18. Le Fe Do, Strong consistency of an estimate of a moment function of fourth order of a stationary random process, Ukrain. Mat. Zh. 49 (1991), 354-358 (in Russian).
  19. V. P. Leonov and A. N. Shiryaev, On a method of calculation of semi-invariants, Theor. Probab. Appl. 4 (1959), 319-329.
  20. K. S. Lii and M. Rosenblatt, Cumulant spectral estimates: Bias and covariance, in: Limit Theorems in Probability and Statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 365-405.
  21. K. S. Lii, M. Rosenblatt and C. W. Atta, Bispectral measurements in turbulence, J. Fluid Mech. 77 (1976), 45-62.
  22. A. Preumont, Vibrations aléatoires et analyse spectrale, Presses Polytechniques et Universitaires Romandes, Lausanne, 1990.
  23. M. B. Priestley, Spectral Analysis and Time Series, Academic Press, London, 1981.
  24. M. Rosenblatt and J. Van Ness, Estimation of the bispectrum, Ann. Math. Statist. 36 (1965), 1120-1135.
  25. A. N. Shiryaev, Some problems in the spectral theory of higher-order moments, Theor. Probab. Appl. 5 (1961), 265-284.
  26. T. Subba Rao and M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statist. 24, Springer, New York, 1984.
  27. I. G. Žurbenko [I. G. Zhurbenko], The Spectral Analysis of Time Series, North-Holland, Amsterdam, 1986.
Pages:
357-381
Main language of publication
English
Received
1995-07-19
Accepted
1996-11-07
Published
1997
Exact and natural sciences