ArticleOriginal scientific text
Title
Statistical estimation of higher-order spectral densities by means of general tapering
Authors 1
Affiliations
- UFR des Sciences-Mathématiques, URA CNRS 1378, site Colbert, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
Abstract
Given a realization on a finite interval of a continuous-time stationary process, we construct estimators for higher order spectral densities. Tapering and shift-in-time methods are used to build estimators which are asymptotically unbiased and consistent for all admissible values of the argument. Asymptotic results for the fourth-order densities are given. Detailed attention is paid to the nth order case.
Keywords
shift-in-time, higher-order spectral densities, cumulant, admissible values, indecomposable partitions, stochastic processes, product moment, tapering, characteristic number
Bibliography
- M. Baba Harra, Estimation de densités spectrales d'ordre quatre avec lissage quelconque, Publication de l'URA 1378 Analyse et Modèles Stochastiques 2 (1995), 1-38.
- M. Baba Harra, Estimation de densités spectrales d'ordre élevé, PhD thesis, Université de Rouen, 1996.
- A. Blanc-Lapierre et R. Fortet, Théorie des Fonctions Aléatoires, Masson, Paris, 1953.
- P. Bloomfield, Fourier Analysis of Time Series: An Introduction, Wiley, New York, 1976.
- D. R. Brillinger, An introduction to polyspectra, Ann. Math. Statist. 36 (1965), 1351-1374.
- D. R. Brillinger, Time Series: Data Analysis and Theory, Holt, Rinehart and Winston, New York, 1975.
- D. R. Brillinger, The 1983 Wald memorial lectures: Some statistical methods for random process data from seismology and neurophysiology, Ann. Statist. 16 (1988), 1-54.
- D. R. Brillinger and M. Rosenblatt, Asymptotic theory of estimates of k-th order spectra, in: B. Harris (ed.), Advanced Seminar on Spectral Analysis of Time Series, Wiley, New York, 1967, 153-231.
- J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297-301.
- R. Dahlhaus, Spectral analysis with tapered data, J. Time Ser. Anal. 4 (1983), 163-175.
- R. Dahlhaus, Nonparametric spectral analysis with missing observations, Sankhyā 3 (1987), 347-367.
- S. Elgar and V. Chandran, Higher order spectral analysis of Chua's circuit, IEEE Trans. Circuit Systems, 40 (1993), 689-692.
- U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series, Wiley, New York, 1957.
- G. A. Isakova, Estimation spectrale d'ordre élevé pour les processus stationnaires avec lissage gaussien, C. R. l'Acad. Sci. République Sov. Biélorussie 3 (1989), 3-9.
- R. H. Jones, Spectral analysis with regularly missed observations, Ann. Math. Statist. 33 (1962), 455-461.
- P. T. Kim, Estimation of product moments of a stationary stochastic process with application to estimation of cumulants and cumulant spectral densities, Canad. J. Statist. 17 (1989), 285-299.
- L. H. Koopmans, The Spectral Analysis of Time Series, Academic Press, New York, 1974.
- Le Fe Do, Strong consistency of an estimate of a moment function of fourth order of a stationary random process, Ukrain. Mat. Zh. 49 (1991), 354-358 (in Russian).
- V. P. Leonov and A. N. Shiryaev, On a method of calculation of semi-invariants, Theor. Probab. Appl. 4 (1959), 319-329.
- K. S. Lii and M. Rosenblatt, Cumulant spectral estimates: Bias and covariance, in: Limit Theorems in Probability and Statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 365-405.
- K. S. Lii, M. Rosenblatt and C. W. Atta, Bispectral measurements in turbulence, J. Fluid Mech. 77 (1976), 45-62.
- A. Preumont, Vibrations aléatoires et analyse spectrale, Presses Polytechniques et Universitaires Romandes, Lausanne, 1990.
- M. B. Priestley, Spectral Analysis and Time Series, Academic Press, London, 1981.
- M. Rosenblatt and J. Van Ness, Estimation of the bispectrum, Ann. Math. Statist. 36 (1965), 1120-1135.
- A. N. Shiryaev, Some problems in the spectral theory of higher-order moments, Theor. Probab. Appl. 5 (1961), 265-284.
- T. Subba Rao and M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statist. 24, Springer, New York, 1984.
- I. G. Žurbenko [I. G. Zhurbenko], The Spectral Analysis of Time Series, North-Holland, Amsterdam, 1986.