Optimal stopping time problems for a risk process $U_t=u+ct-\sum_{n=0}^{N(t)}X_n$ where the number N(t) of losses up to time t is a general renewal process and the sequence of $X_i$'s represents successive losses are studied. N(t) and $X_i$'s are independent. Our goal is to maximize the expected return before the ruin time. The main results are closely related to those obtained by Boshuizen and Gouweleew [2].
Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
[1] F. A. Boshuizen and J. M. Gouweleew, A continuous-time job search model: general renewal processes, Report 9247/A, Econometric Institute, Erasmus University Rotterdam, 1992.
[2] F. A. Boshuizen and J. M. Gouweleew, General optimal stopping theorems for semi-Markov processes, preprint, 1993.
[3] M. H. A. Davis, Markov Models and Optimization, Chapman & Hall, London, 1993.
[4] M. H. A. Davis, The representation of martingales of jump processes, SIAM J. Control Optim. 14 (1976), 623-638.
[5] E. Z. Ferenstein, A variation of Dynkin's stopping game, Math. Japon. 38 (1993), 371-379.
[6] E. Z. Ferenstein and E. G. Enns, A continuous-time Dynkin's stopping game: renewal processes case, to appear.
[7] R. S. Liptser and A. N. Shiryaev, Statistics of Stochastic Processes, Nauka, Moscow, 1974 (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv24i3p335bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.