ArticleOriginal scientific text
Title
Limit cycles for vector fields with homogeneous components
Authors 1, 2, 2
Affiliations
- Departament de Matemàtica Aplicada Ii, E.T.S. d'Enginyers Industrials de Terrassa, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa, Barcelona, Spain
- Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Abstract
We study planar polynomial differential equations with homogeneous components. This kind of equations present a simple and well known dynamics when the degrees (n and m) of both components coincide. Here we consider the case and we show that the dynamics is more complicated. In fact, we prove that such systems can exhibit periodic orbits only when nm is odd. Furthermore, for nm odd we give examples of such differential equations with at least (n+m)/2 limit cycles.
Keywords
homogeneous function, limit cycle, vector field
Bibliography
- J. Argémi, Sur les points singuliers multiples de systèmes dynamiques dans
, Ann. Mat. Pura Appl. (4) 79 (1968), 35-69. - A. Cima, A. Gasull and F. Ma nosas, Cyclicity of a family of vector fields, J. Math. Anal. Appl. 196 (1995), 921-937.
- D. Eisenbud and H. Levine, An algebraic formula for the degree of a
map germ, Ann. of Math. 106 (1977), 19-44. - W. Fulton, Algebraic Curves. An Introduction to Algebraic Geometry, Benjamin, New York, 1969.
- A. M. Lyapunov, Stability of Motion, Math. Sci. Engrng. 30, Academic Press, New York, 1966.
- L. S. Pontryagin, On dynamical systems close to the Hamiltonian ones, Zh. Eksperiment. Teoret. Fiz. 4 (1934), 883-885 (in Russian).