ArticleOriginal scientific text

Title

Limit cycles for vector fields with homogeneous components

Authors 1, 2, 2

Affiliations

  1. Departament de Matemàtica Aplicada Ii, E.T.S. d'Enginyers Industrials de Terrassa, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa, Barcelona, Spain
  2. Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Abstract

We study planar polynomial differential equations with homogeneous components. This kind of equations present a simple and well known dynamics when the degrees (n and m) of both components coincide. Here we consider the case nm and we show that the dynamics is more complicated. In fact, we prove that such systems can exhibit periodic orbits only when nm is odd. Furthermore, for nm odd we give examples of such differential equations with at least (n+m)/2 limit cycles.

Keywords

homogeneous function, limit cycle, vector field

Bibliography

  1. J. Argémi, Sur les points singuliers multiples de systèmes dynamiques dans symR2, Ann. Mat. Pura Appl. (4) 79 (1968), 35-69.
  2. A. Cima, A. Gasull and F. Ma nosas, Cyclicity of a family of vector fields, J. Math. Anal. Appl. 196 (1995), 921-937.
  3. D. Eisenbud and H. Levine, An algebraic formula for the degree of a C map germ, Ann. of Math. 106 (1977), 19-44.
  4. W. Fulton, Algebraic Curves. An Introduction to Algebraic Geometry, Benjamin, New York, 1969.
  5. A. M. Lyapunov, Stability of Motion, Math. Sci. Engrng. 30, Academic Press, New York, 1966.
  6. L. S. Pontryagin, On dynamical systems close to the Hamiltonian ones, Zh. Eksperiment. Teoret. Fiz. 4 (1934), 883-885 (in Russian).
Pages:
281-287
Main language of publication
English
Received
1995-12-07
Accepted
1996-09-30
Published
1997
Exact and natural sciences