ArticleOriginal scientific text

Title

Effective computation of the first Lyapunov quantities for a planar differential equation

Authors 1, 1

Affiliations

  1. Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Abstract

We take advantage of the complex structure to compute in a short way and without using any computer algebra system the Lyapunov quantities V3 and V5 for a general smooth planar system.

Keywords

Lyapunov quantities, weak focus, stability

Bibliography

  1. [AL] M. A. M. Alwash and N. G. Lloyd, Non-autonomous equations related to polynomial two-dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 129-152.
  2. [ALGM] A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Theory of Bifurcations of Dynamic Systems on a Plane, Wiley, New York, 1967.
  3. [CGMM] A. Cima, A. Gasull, V. Ma nosa and F. Ma nosas, Algebraic properties of the Lyapunov and Period constants, Rocky Mountain J. Math., to appear.
  4. [FLLL] W. W. Farr, C. Li, I. S. Labouriau and W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal. 20 (1989), 13-29.
  5. [G] E. Gamero, Computacion simbólica y bifurcaciones de sistemas dinámicos, Ph.D. thesis, Universidad de Sevilla, 1990.
  6. [GW] F. Göbber and K.-D. Willamowski, Ljapunov approach to multiple Hopf bifurcation, J. Math. Anal. Appl. 71 (1979), 333-350.
  7. [GR] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 1980.
  8. [HW] B. Hassard and Y. H. Wan, Bifurcation formulae derived from center manifold theory, J. Math. Anal. Appl. 63 (1978), 297-312.
Pages:
243-250
Main language of publication
English
Received
1995-05-24
Accepted
1996-07-15
Published
1997
Exact and natural sciences