ArticleOriginal scientific text

Title

Tail orderings and the total time on test transform

Authors 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

The paper presents some connections between two tail orderings of distributions and the total time on test transform. The procedure for testing the pure-tail ordering is proposed.

Keywords

partial orderings, outliers, spacings, goodness-of-fit test, density-quantile function

Bibliography

  1. A. A. Alzaid and M. Al-Osh, Ordering probability distributions by tail behavior, Statist. Probab. Lett. 8 (1989), 185-188.
  2. R. E. Barlow, D. J. Bartholomew, J. M. Bremner and H. D. Brunk, Statistical Inference under Order Restrictions, Wiley, New York, 1972.
  3. R. E. Barlow and K. A. Doksum, Isotonic tests for convex orderings, in: Proc. 6th Berkeley Sympos. Math. Statist. Probab. I, Univ. of Calif. Press, 1972, 293-323.
  4. R. E. Barlow and F. Proschan, The Statistical Theory of Reliability, Holt, Rinehart and Winston, New York, 1975.
  5. R. E. Barlow and W. R. van Zwet, Asymptotic properties of isotonic estimators for the generalized failure rate function, in: Nonparametic Techniques in Statistical Inference, Cambridge Univ. Press, Cambridge, 1970, 159-176.
  6. V. Barnett and T. Lewis, Outliers in Statistical Data, Wiley, New York, 1978.
  7. J. Bartoszewicz, Dispersive ordering and the total time on test transformation, Statist. Probab. Lett. 4 (1986), 285-288.
  8. J. Bartoszewicz, Asymptotic distributions of tests for dispersive ordering, ibid. 15 (1992), 11-20.
  9. J. Bartoszewicz, Stochastic order relations and the total time on test transform, ibid. 22 (1995), 103-110.
  10. J. Bartoszewicz and T. Bednarski, On a test for dispersive ordering, ibid. 10 (1990), 355-362.
  11. K. A. Doksum, Starshaped transformations and the power of rank tests, Ann. Math. Statist. 40 (1969), 1167-1176.
  12. J. Hájek and Z. Šidák, Theory of Rank Tests, Academic Press, New York, 1967.
  13. M. J. Lawrance, Inequalities of s-ordered distributions, Ann. Statist. 3 (1975), 413-428.
  14. E. L. Lehmann, Comparing location experiments, ibid. 16 (1988), 521-533.
  15. W. Y. Loh, Bounds on ARE's for restricted classes of distributions defined via tail orderings, ibid. 12, 685-701.
  16. E. Parzen, Nonparametric statistical data modeling, J. Amer. Statist. Assoc. 74 (1979), 105-131.
  17. J. Rojo, A pure-tail ordering based on the ratio of the quantile functions, Ann. Statist. 20 (1992), 570-579.
  18. E. F. Schuster, Classification of probability laws by tail behavior, J. Amer. Statist. Assoc. 79 (1984), 936-939.
  19. E. Seneta, Regularly Varying Functions, Springer, New York, 1976.
  20. M. Shaked, Dispersive ordering of distributions, J. Appl. Probab. 9 (1982), 310-320.
  21. W. R. van Zwet, Convex Transformations of Random Variables, Math. Centrum, Amsterdam, 1964.
Pages:
77-86
Main language of publication
English
Received
1995-08-25
Published
1996
Exact and natural sciences