ArticleOriginal scientific text
Title
Tail orderings and the total time on test transform
Authors 1
Affiliations
- Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Abstract
The paper presents some connections between two tail orderings of distributions and the total time on test transform. The procedure for testing the pure-tail ordering is proposed.
Keywords
partial orderings, outliers, spacings, goodness-of-fit test, density-quantile function
Bibliography
- A. A. Alzaid and M. Al-Osh, Ordering probability distributions by tail behavior, Statist. Probab. Lett. 8 (1989), 185-188.
- R. E. Barlow, D. J. Bartholomew, J. M. Bremner and H. D. Brunk, Statistical Inference under Order Restrictions, Wiley, New York, 1972.
- R. E. Barlow and K. A. Doksum, Isotonic tests for convex orderings, in: Proc. 6th Berkeley Sympos. Math. Statist. Probab. I, Univ. of Calif. Press, 1972, 293-323.
- R. E. Barlow and F. Proschan, The Statistical Theory of Reliability, Holt, Rinehart and Winston, New York, 1975.
- R. E. Barlow and W. R. van Zwet, Asymptotic properties of isotonic estimators for the generalized failure rate function, in: Nonparametic Techniques in Statistical Inference, Cambridge Univ. Press, Cambridge, 1970, 159-176.
- V. Barnett and T. Lewis, Outliers in Statistical Data, Wiley, New York, 1978.
- J. Bartoszewicz, Dispersive ordering and the total time on test transformation, Statist. Probab. Lett. 4 (1986), 285-288.
- J. Bartoszewicz, Asymptotic distributions of tests for dispersive ordering, ibid. 15 (1992), 11-20.
- J. Bartoszewicz, Stochastic order relations and the total time on test transform, ibid. 22 (1995), 103-110.
- J. Bartoszewicz and T. Bednarski, On a test for dispersive ordering, ibid. 10 (1990), 355-362.
- K. A. Doksum, Starshaped transformations and the power of rank tests, Ann. Math. Statist. 40 (1969), 1167-1176.
- J. Hájek and Z. Šidák, Theory of Rank Tests, Academic Press, New York, 1967.
- M. J. Lawrance, Inequalities of s-ordered distributions, Ann. Statist. 3 (1975), 413-428.
- E. L. Lehmann, Comparing location experiments, ibid. 16 (1988), 521-533.
- W. Y. Loh, Bounds on ARE's for restricted classes of distributions defined via tail orderings, ibid. 12, 685-701.
- E. Parzen, Nonparametric statistical data modeling, J. Amer. Statist. Assoc. 74 (1979), 105-131.
- J. Rojo, A pure-tail ordering based on the ratio of the quantile functions, Ann. Statist. 20 (1992), 570-579.
- E. F. Schuster, Classification of probability laws by tail behavior, J. Amer. Statist. Assoc. 79 (1984), 936-939.
- E. Seneta, Regularly Varying Functions, Springer, New York, 1976.
- M. Shaked, Dispersive ordering of distributions, J. Appl. Probab. 9 (1982), 310-320.
- W. R. van Zwet, Convex Transformations of Random Variables, Math. Centrum, Amsterdam, 1964.