ArticleOriginal scientific text

Title

The linear programming approach to deterministic optimal control problems

Authors 1, 2, 3

Affiliations

  1. Departamento de Matemáticas, UAM-I, Apartado Postal 55-534, México D.F., Mexico
  2. Departamento de Matemáticas, CINVESTAV-IPN, Apartado Postal 14-740, 07000 México D.F., Mexico
  3. Department of Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A.

Abstract

Given a deterministic optimal control problem (OCP) with value function, say J, we introduce a linear program (P) and its dual (P) whose values satisfy (P)f(P)J(t,x). Then we give conditions under which (i) there is no duality gap

Keywords

linear programming (in infinite-dimensional spaces), duality theory, optimal control

Bibliography

  1. E. J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces, Wiley, Chichester, 1989.
  2. W. H. Fleming, Generalized solutions and convex duality in optimal control, in: Partial Differential Equations and the Calculus of Variations, Vol. I, F. Colombini et al. (eds.), Birkhäuser, Boston, 1989, 461-471.
  3. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975.
  4. W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1992.
  5. W. H. Fleming and D. Vermes, Generalized solutions in the optimal control of diffusions, IMA Vol. Math. Appl. 10, W. H. Fleming and P. L. Lions (eds.), Springer, New York, 1988, 119-127.
  6. W. H. Fleming, Convex duality approach to the optimal control of diffusions, SIAM J. Control Optim. 27 (1989), 1136-1155.
  7. O. Hernández-Lerma, Existence of average optimal policies in Markov control processes with strictly unbounded costs, Kybernetika (Prague) 29 (1993), 1-17.
  8. O. Hernández-Lerma and D. Hernández-Hernández, Discounted cost Markov decision processes on Borel spaces: The linear programming formulation, J. Math. Anal. Appl. 183 (1994), 335-351.
  9. O. Hernández-Lerma and J. B. Lasserre, Linear programming and average optimality of Markov control processes on Borel spaces-unbounded costs, SIAM J. Control Optim. 32 (1994), 480-500.
  10. J. L. Kelley, General Topology, Van Nostrand, New York, 1957.
  11. R. M. Lewis and R. B. Vinter, Relaxation of optimal control problems to equivalent convex programs, J. Math. Anal. Appl. 74 (1980), 475-493.
  12. J. E. Rubio, Control and Optimization, Manchester Univ. Press, Manchester, 1986.
  13. R. H. Stockbridge, Time-average control of martingale problems: a linear programming formulation, Ann. Probab. 18 (1990), 206-217.
Pages:
17-33
Main language of publication
English
Received
1995-02-09
Accepted
1995-08-29
Published
1996
Exact and natural sciences