ArticleOriginal scientific text
Title
The linear programming approach to deterministic optimal control problems
Authors 1, 2, 3
Affiliations
- Departamento de Matemáticas, UAM-I, Apartado Postal 55-534, México D.F., Mexico
- Departamento de Matemáticas, CINVESTAV-IPN, Apartado Postal 14-740, 07000 México D.F., Mexico
- Department of Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A.
Abstract
Given a deterministic optimal control problem (OCP) with value function, say , we introduce a linear program and its dual whose values satisfy . Then we give conditions under which (i) there is no duality gap
Keywords
linear programming (in infinite-dimensional spaces), duality theory, optimal control
Bibliography
- E. J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces, Wiley, Chichester, 1989.
- W. H. Fleming, Generalized solutions and convex duality in optimal control, in: Partial Differential Equations and the Calculus of Variations, Vol. I, F. Colombini et al. (eds.), Birkhäuser, Boston, 1989, 461-471.
- W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975.
- W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1992.
- W. H. Fleming and D. Vermes, Generalized solutions in the optimal control of diffusions, IMA Vol. Math. Appl. 10, W. H. Fleming and P. L. Lions (eds.), Springer, New York, 1988, 119-127.
- W. H. Fleming, Convex duality approach to the optimal control of diffusions, SIAM J. Control Optim. 27 (1989), 1136-1155.
- O. Hernández-Lerma, Existence of average optimal policies in Markov control processes with strictly unbounded costs, Kybernetika (Prague) 29 (1993), 1-17.
- O. Hernández-Lerma and D. Hernández-Hernández, Discounted cost Markov decision processes on Borel spaces: The linear programming formulation, J. Math. Anal. Appl. 183 (1994), 335-351.
- O. Hernández-Lerma and J. B. Lasserre, Linear programming and average optimality of Markov control processes on Borel spaces-unbounded costs, SIAM J. Control Optim. 32 (1994), 480-500.
- J. L. Kelley, General Topology, Van Nostrand, New York, 1957.
- R. M. Lewis and R. B. Vinter, Relaxation of optimal control problems to equivalent convex programs, J. Math. Anal. Appl. 74 (1980), 475-493.
- J. E. Rubio, Control and Optimization, Manchester Univ. Press, Manchester, 1986.
- R. H. Stockbridge, Time-average control of martingale problems: a linear programming formulation, Ann. Probab. 18 (1990), 206-217.