ArticleOriginal scientific text

Title

Wavelet transform for time-frequency representation and filtration of discrete signals

Authors 1

Affiliations

  1. Research and Development Center of Statistics, al. Niepodległości 208, 00-925 Warszawa, Poland

Abstract

A method to analyse and filter real-valued discrete signals of finite duration s(n), n=0,1,...,N-1, where N=2p, p>0, by means of time-frequency representation is presented. This is achieved by defining an invertible discrete transform representing a signal either in the time or in the time-frequency domain, which is based on decomposition of a signal with respect to a system of basic orthonormal discrete wavelet functions. Such discrete wavelet functions are defined using the Meyer generating wavelet spectrum and the classical discrete Fourier transform between the time and the frequency domains.

Keywords

spectro-temporal filtration, orthonormal wavelet base, Discrete Fourier Transform, finite duration signals

Bibliography

  1. C. K. Chui, An Introduction to Wavelets, Academic Press, San Diego, 1992.
  2. I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
  3. K. Flornes, A. Grossmann, M. Holschneider and B. Torresani, Wavelets on discrete fields, Appl. Comput. Harmonic Anal. 1 (1994), 137-146.
  4. C. Gasquet et P. Witomski, Analyse de Fourier et applications, filtrage, calcul numérique, ondelettes, Masson, Paris, 1990.
  5. L. H. Koopmans, The Spectral Analysis of Time Series, Academic Press, New York, 1974.
  6. Y. Meyer, Principe d'incertitude, bases Hilbertiennes et algèbres d'opérateurs, Séminaire Bourbaki 662 (1985-1986).
  7. Y. Meyer, Ondelettes et opérateurs I, Hermann, Paris, 1990, 109-120.
  8. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. Vetterling, Numerical Recipes-The Art of Scientific Computing, Cambridge University Press, 1992.
  9. R. C. Singleton, An algorithm for computing the mixed radix fast Fourier transform, IEEE Trans. Audio Electroacoustics AU-17 (2) (1969).
Pages:
433-448
Main language of publication
English
Received
1995-03-09
Published
1996
Exact and natural sciences