Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to discuss the acceleration properties of the hybrid procedure for solving a system of linear equations. These properties are studied in a general case and in two particular cases which are illustrated by numerical examples.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
417-432
Opis fizyczny
Daty
wydano
1996
otrzymano
1995-01-24
Twórcy
autor
- Laboratoire d'Analyse Numérique et d'Optimisation, UFR IEEA-m3, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cedex, France
autor
- Laboratoire d'Analyse Numérique et d'Optimisation, UFR IEEA-m3, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cedex, France
Bibliografia
- [1] C. Brezinski and M. Redivo Zaglia, Hybrid procedures for solving linear systems, Numer. Math. 67 (1994), 1-19.
- [2] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Statist. Comput. 14 (1993), 470-482.
- [3] N. Gastinel, Procédé itératif pour la résolution numérique d'un système d'équations linéaires, C. R. Acad. Sci. Paris 246 (1958), 2571-2574.
- [4] K. Jbilou, Projection-minimization methods for nonsymmetric linear systems, Linear Algebra Appl. 229 (1995), 101-125.
- [5] K. Jbilou, G-orthogonal projection methods for solving linear systems, to appear.
- [6] W. Schönauer, Scientific Computing on Vector Computers, North-Holland, Amsterdam, 1987.
- [7] W. Schönauer, H. Müller and E. Schnepf, Numerical tests with biconjugate gradient type methods, Z. Angew. Math. Mech. 65 (1985), T400-T402.
- [8] R. Weiss, Convergence behavior of generalized conjugate gradient methods, Ph.D. Thesis, University of Karlsruhe, 1990.
- [9] R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Statist. Comput. 15 (1994), 511-527.
- [10] R. Weiss, Properties of generalized conjugate gradient methods, Numer. Linear Algebra Appl. 1 (1994), 45-63.
- [11] R. Weiss and W. Schönauer, Accelerating generalized conjugate gradient methods by smoothing, in: Iterative Methods in Linear Algebra, R. Beauwens and P. de Groen (eds.), North-Holland, Amsterdam, 1992, 283-292.
- [12] L. Zhou and H. F. Walker, Residual smoothing techniques for iterative methods, SIAM J. Sci. Statist. Comput. 15 (1994), 297-312.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv23i4p417bwm