ArticleOriginal scientific text

Title

Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law

Authors 1

Affiliations

  1. Laboratoire de Modélisation et Calcul/I.M.A.G., Tour Irma, 51, Rue des Mathématiques, B.P. 53, 38041 Grenoble Cedex, France

Abstract

Let Ni, i ≥ 1, be i.i.d. observable Cox processes on [a,b] directed by random measures M_i. Assume that the probability law of the M_i is completely unknown. Random techniques are developed (we use data from the processes N1,..., Nn to construct a partition of [a,b] whose extremities are random) to estimate L(μ,g) = E(exp(-(N(g) - μ(g))) | N - μ ≥ 0).

Keywords

random partition, Cox processes, reduced Palm processes

Bibliography

  1. S. Abou-Jaoude, Convergence L1 et L de certains estimateurs d'une densité de probabilité, thèse de doctorat d'état, Université Pierre et Marie Curie, 1979.
  2. E. Crétois, Estimation de la densité moyenne d'un processus ponctuel de Poisson par des méthodes aléatoires, Congrès des XXIVèmes Journées de Statistique de Bruxelles, Mai 1992.
  3. O. Kallenberg, Random Measures, 3rd ed., Akademie-Verlag, Berlin, and Academic Press, London.
  4. A. F. Karr, State estimation for Cox processes with unknown probability law, Stochastic Process. Appl. 20 (1985), 115-131.
  5. A. F. Karr, Point Processes and Their Statistical Inference, Marcel Dekker, New York, 1986.
Pages:
247-259
Main language of publication
English
Received
1993-06-16
Accepted
1994-04-20
Published
1995
Exact and natural sciences