ArticleOriginal scientific text
Title
Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law
Authors 1
Affiliations
- Laboratoire de Modélisation et Calcul/I.M.A.G., Tour Irma, 51, Rue des Mathématiques, B.P. 53, 38041 Grenoble Cedex, France
Abstract
Let , i ≥ 1, be i.i.d. observable Cox processes on [a,b] directed by random measures M_i. Assume that the probability law of the M_i is completely unknown. Random techniques are developed (we use data from the processes ,..., to construct a partition of [a,b] whose extremities are random) to estimate L(μ,g) = E(exp(-(N(g) - μ(g))) | N - μ ≥ 0).
Keywords
random partition, Cox processes, reduced Palm processes
Bibliography
- S. Abou-Jaoude, Convergence
et de certains estimateurs d'une densité de probabilité, thèse de doctorat d'état, Université Pierre et Marie Curie, 1979. - E. Crétois, Estimation de la densité moyenne d'un processus ponctuel de Poisson par des méthodes aléatoires, Congrès des XXIVèmes Journées de Statistique de Bruxelles, Mai 1992.
- O. Kallenberg, Random Measures, 3rd ed., Akademie-Verlag, Berlin, and Academic Press, London.
- A. F. Karr, State estimation for Cox processes with unknown probability law, Stochastic Process. Appl. 20 (1985), 115-131.
- A. F. Karr, Point Processes and Their Statistical Inference, Marcel Dekker, New York, 1986.