We consider a parabolic equation which describes the gravitational interaction of particles. Existence of solutions and their convergence to stationary states are studied.
Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
[1] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, preprint 1994.
[2] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308.
[3] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145.
[4] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334.
[5] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622.
[6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964.
[7] E. Hopf, The partial differential equation u_t + uu_x=u_xx, Comm. Pure Appl. Math. 3 (1950), 201-230.
[8] A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Zastos. Mat. 21 (1991), 265-272.
[9] A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, ibid. 21 (1993), 591-595.
[10] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv23i2p169bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.