ArticleOriginal scientific text
Title
A branch&bound algorithm for solving one-dimensional cutting stock problems exactly
Authors 1, 1
Affiliations
- Institute of Numerical Mathematics, Technical University Dresden, Mommsenstr. 13, D-01062 Dresden, Germany
Abstract
Many numerical computations reported in the literature show only a small difference between the optimal value of the one-dimensional cutting stock problem (1CSP) and that of the corresponding linear programming relaxation. Moreover, theoretical investigations have proven that this difference is smaller than 2 for a wide range of subproblems of the general 1CSP.
Keywords
rounding, cutting stock problem, branch&bound, integer optimization
Bibliography
- S. Baum and L. E. Trotter, Jr., Integer rounding for polymatroid and branching optimization problems, SIAM J. Algebraic Discrete Methods 2 (1981), 416-425.
- E. G. Coffmann, Jr., M. R. Garey, D. S. Johnson and R. E. Targon, Performance bounds for level oriented two-dimensional packing algorithms, SIAM J. Comput. 9 (1980), 808-826.
- A. Diegel, Integer LP solution for large trim problem, Working Paper, University of Natal, South Africa, 1988.
- H. Dyckhoff and U. Finke, Cutting and Packing in Production and Distribution, Physica Verlag, Heidelberg, 1992.
- M. Fieldhouse, The duality gap in trim problems, SICUP-Bulletin No. 5, 1990.
- P. C. Gilmore and R. E. Gomory, A linear programming approach to the cutting stock problem, Oper. Res. 9 (1961), 849-859.
- P. C. Gilmore and R. E. Gomory, A linear programming approach to the cutting stock problem, II, ibid. 11 (1963), 863-888.
- R. E. Johnston, Rounding algorithms for cutting stock problems, Asia-Pacific J. Oper. Res. 3 (1986), 166-171.
- O. Marcotte, The cutting stock problem and integer rounding, Math. Programming 33 (1985), 82-92.
- O. Marcotte, An instance of the cutting stock problem for which the rounding property does not hold, Oper. Res. Lett. 4 (1986), 239-243.
- G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New York, 1988.
- G. Scheithauer and J. Terno, About the gap between the optimal values of the integer and continuous relaxation one-dimensional cutting stock problem, in: Operations Research Proceedings 1991, Springer, Berlin, 1992, 439-444.
- G. Scheithauer and J. Terno, The modified integer round-up property for the one-dimensional cutting stock problem, Preprint MATH-NM-10-1993, TU Dresden (submitted).
- G. Scheithauer and J. Terno, Theoretical investigations on the modified integer round-up property for one-dimensional cutting stock problem, Preprint MATH-NM-12-1993, TU Dresden (submitted).
- G. Scheithauer and J. Terno, Equivalence of cutting stock problems, Working Paper, TU Dresden, 1993.
- J. Terno, R. Lindemann und G. Scheithauer, Zuschnittprobleme und ihre praktische Lösung, Verlag Harry Deutsch, Thun und Frankfurt/Main, und Fachbuchverlag, Leipzig, 1987.
- G. Wäscher and T. Gau, Two approaches to the cutting stock problem, IFORS '93 Conference, Lisboa 1993.