ArticleOriginal scientific text

Title

Spectral density estimation for stationary stable random fields

Authors 1

Affiliations

  1. Etablissement National D'Enseignement Supérieur, Agronomique de Dijon, 26, Boulevard du Dr. Petitjean, B.P. 1607, F-21036 Dijon, France

Abstract

We consider a stationary symmetric stable bidimensional process with discrete time, having the spectral representation (1.1). We consider a general case where the spectral measure is assumed to be the sum of an absolutely continuous measure, a discrete measure of finite order and a finite number of absolutely continuous measures on several lines. We estimate the density of the absolutely continuous measure and the density on the lines.

Keywords

(S.α.S) process, double kernel method, periodogram, Jackson kernel

Bibliography

  1. B. S. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82 (1989), 451-487.
  2. M. Bertrand-Retali, Processus symétriques α-stables, Séminaire de Probabilité et Statistique à l'Université de Constantine, Algérie, 1987.
  3. S. Cambanis, Complex symmetric stable variables and processes, in: P. K. Sen (ed.), Contributions to Statistics: Essays in Honour of Norman L. Johnson, North-Holland, New York, 1982, 63-79.
  4. S. Cambanis and G. Miller, Some path properties of pth order and symmetric stable processes, Ann. Probab. 8 (1980), 1148-1156.
  5. S. Cambanis and G. Miller, Linear problems in pth order and stable processes, SIAM J. Appl. Math. 41 (1981), 43-69.
  6. N. Demesh, Application of the polynomial kernels to the estimation of the spectra of discrete stable stationary processes, Akad. Nauk Ukrain. SSR, Inst. Mat. Preprint 64 (1988), 12-36 (in Russian).
  7. V. K. Dzyadyk, Introduction à la théorie de l'approximation uniforme par fonctions polynomiales, Nauka, 1977 (in Russian).
  8. C. D. Hardin, On the spectral representation theorem for symmetric stable processes, J. Multivariate Anal. 12 (1982), 385-401.
  9. L. Heinrich, On the convergence of U-statistics with stable limit distribution, J. Multivariate Anal. 44 (1993), 266-278.
  10. Y. Hosoya, Discrete-time stable processes and their certain properties, Ann. Probab. 6 (1978), 94-105.
  11. E. Masry and S. Cambanis, Spectral density estimation for stationary stable processes, Stochastic Process. Appl. 18 (1984), 1-31.
  12. M. B. Priestley, Spectral Analysis and Time Series, Probab. Math. Statist., Academic Press, 1981.
  13. R. Sabre, Estimation non paramétrique dans les processus symétriques stables, Thèse de doctorat en Mathématiques, Université de Rouen, 1993.
  14. M. Schilder, Some structure theorems for the symmetric stable laws, Ann. Math. Statist. 42 (1970), 412-421.
  15. R. Song, Probabilistic approach to the Dirichlet problem of perturbed stable processes, Probab. Theory Related Fields 95 (1993), 371-389.
Pages:
107-133
Main language of publication
English
Received
1993-10-22
Accepted
1994-07-05
Published
1995
Exact and natural sciences