ArticleOriginal scientific text

Title

Some remarks on the space of differences of sublinear functions

Authors 1, 1

Affiliations

  1. Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe, Germany

Abstract

Two properties concerning the space of differences of sublinear functions D(X) for a real Banach space X are proved. First, we show that for a real separable Banach space (X,‖·‖) there exists a countable family of seminorms such that D(X) becomes a Fréchet space. For X = ℝ^n this construction yields a norm such that D(ℝ^n) becomes a Banach space. Furthermore, we show that for a real Banach space with a smooth dual every sublinear Lipschitzian function can be expressed by the Fenchel conjugate of the farthest point mapping to its subdifferential at the origin. This leads to a simple family of sublinear functions which contains an exhaustive family of upper convex approximations for any quasidifferentiable function.

Keywords

upper convex approximation, sublinear function, Fenchel conjugation, quasidifferentiable function

Bibliography

  1. U. Cegrell, On the space of delta-convex functions and its dual, Bull. Math. Soc. Sci. Math. R. S. Roumanie 22 (1978), 133-139.
  2. V. F. Demyanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., Publications Division, New York, 1986.
  3. J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math. 485, Springer, Heidelberg, 1975.
  4. J. Grzybowski, Minimal pairs of compact convex sets, Arch. Math. (Basel), submitted.
  5. L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186.
  6. D. Pallaschke, P. Recht and R. Urbański, On locally Lipschitz quasidifferentiable functions in Banach spaces, Optimization 17 (1986), 287-295.
  7. D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5.
  8. D. Pallaschke and R. Urbański, Some criteria for the minimality of pairs of compact convex sets, Z. Oper. Res. 37 (1993), 129-150.
  9. D. Pallaschke and R. Urbański, Reduction of quasidifferentials and minimal representations, Math. Programming Ser. A, to appear.
  10. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1972.
  11. S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, and Reidel, Boston, 1984.
  12. H. H. Schäfer, Topological Vector Spaces, Springer, New York, 1971.
  13. S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.
Pages:
419-426
Main language of publication
English
Received
1993-12-30
Published
1994
Exact and natural sciences