ArticleOriginal scientific text
Title
Some remarks on the space of differences of sublinear functions
Authors 1, 1
Affiliations
- Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe, Germany
Abstract
Two properties concerning the space of differences of sublinear functions D(X) for a real Banach space X are proved. First, we show that for a real separable Banach space (X,‖·‖) there exists a countable family of seminorms such that D(X) becomes a Fréchet space. For X = ℝ^n this construction yields a norm such that D(ℝ^n) becomes a Banach space. Furthermore, we show that for a real Banach space with a smooth dual every sublinear Lipschitzian function can be expressed by the Fenchel conjugate of the farthest point mapping to its subdifferential at the origin. This leads to a simple family of sublinear functions which contains an exhaustive family of upper convex approximations for any quasidifferentiable function.
Keywords
upper convex approximation, sublinear function, Fenchel conjugation, quasidifferentiable function
Bibliography
- U. Cegrell, On the space of delta-convex functions and its dual, Bull. Math. Soc. Sci. Math. R. S. Roumanie 22 (1978), 133-139.
- V. F. Demyanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., Publications Division, New York, 1986.
- J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math. 485, Springer, Heidelberg, 1975.
- J. Grzybowski, Minimal pairs of compact convex sets, Arch. Math. (Basel), submitted.
- L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186.
- D. Pallaschke, P. Recht and R. Urbański, On locally Lipschitz quasidifferentiable functions in Banach spaces, Optimization 17 (1986), 287-295.
- D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5.
- D. Pallaschke and R. Urbański, Some criteria for the minimality of pairs of compact convex sets, Z. Oper. Res. 37 (1993), 129-150.
- D. Pallaschke and R. Urbański, Reduction of quasidifferentials and minimal representations, Math. Programming Ser. A, to appear.
- R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1972.
- S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, and Reidel, Boston, 1984.
- H. H. Schäfer, Topological Vector Spaces, Springer, New York, 1971.
- S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.