ArticleOriginal scientific text

Title

A fast algorithm for the construction of recurrence relations for modified moments

Authors 1

Affiliations

  1. Institute of Computer Science, University of Wrocław, ul. Przesmyckiego 20, 51-151 Wrocław, Poland

Abstract

A new approach is presented for constructing recurrence relations for the modified moments of a function with respect to the Gegenbauer polynomials.

Keywords

Gegenbauer polynomials, recurrence relations, modified moments

Bibliography

  1. B. W. Char et al., Maple V Language Reference Manual, Springer, New York, 1991.
  2. A. Erdélyi (ed.), Higher Transcendental Functions, McGraw-Hill, New York, 1953.
  3. W. Gautschi, Orthogonal polynomials-Constructive theory and applications, J. Comput. Appl. Math. 12&13 (1985), 61-76.
  4. W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982), 289-317.
  5. W. Gautschi, On certain slowly convergent series occurring in plate contact problems, Math. Comp. 57 (1991), 325-338.
  6. S. Lewanowicz, Construction of a recurrence relation for modified moments, J. Comput. Appl. Math. 5 (1979), 193-205.
  7. S. Lewanowicz, Recurrence relations for hypergeometric functions of unit argument, Math. Comp. 45 (1985), 521-535; corr. ibid. 47 (1987), 853.
  8. S. Lewanowicz, Evaluation of Bessel function integrals with algebraic singularity, J. Comput. Appl. Math. 37 (1991), 101-112.
  9. Y. L. Luke, The Special Functions and their Approximations, Academic Press, New York, 1969.
  10. R. Piessens and M. Branders, Modified Clenshaw-Curtis method for the computation of Bessel function integrals, BIT 23 (1983), 370-381.
  11. R. Piessens and M. Branders, On the computation of Fourier transforms of singular functions, J. Comput. Appl. Math. 43 (1992), 159-169.
  12. R. Piessens, E. de Doncker-Kapenga, C. W. Überhuber and D. K. Kahaner, QUADPACK. A Subroutine Package for Automatic Integration, Springer, Berlin, 1983.
Pages:
359-372
Main language of publication
English
Received
1993-11-16
Published
1994
Exact and natural sciences