PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993-1995 | 22 | 3 | 339-349
Tytuł artykułu

On the convergence of the Bhattacharyya bounds in the multiparametric case

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shanbhag (1972, 1979) showed that the diagonality of the Bhattacharyya matrix characterizes the set of normal, Poisson, binomial, negative binomial, gamma or Meixner hypergeometric distributions. In this note, using Shanbhag's techniques, we show that if a certain generalized version of the Bhattacharyya matrix is diagonal, then the bivariate distribution is either normal, Poisson, binomial, negative binomial, gamma or Meixner hypergeometric. Bartoszewicz (1980) extended the result of Blight and Rao (1974) to the multiparameter case. He gave an application of this result when independent samples come from the exponential distribution, and also evaluated the generalized Bhattacharyya bounds for the best unbiased estimator of P(Y
Rocznik
Tom
22
Numer
3
Strony
339-349
Opis fizyczny
Daty
wydano
1994
otrzymano
1993-06-14
poprawiono
1993-11-26
Twórcy
  • Department of Physics & Mathematics, University of King Abdulaziz, P.O. Box 344, Madinah Munawwarah, Saudi Arabia
Bibliografia
  • A. A. Alzaid (1983), Some contributions to characterization theory, Ph.D. Thesis, Shef- field University.
  • A. A. Alzaid (1987), A note on the Meixner class, Pakistan J. Statist. 3, 79-82.
  • J. Bartoszewicz (1980), On the convergence of Bhattacharyya bounds in the multiparameter case. Zastos. Mat. 16, 601-608.
  • A. A. Bhattacharyya (1947), On some analogues of the amount of information and their use in statistical estimation, Sankhyā Ser. A 8, 201-218.
  • Z. W. Birnbaum (1956), On a use of the Mann-Whitney statistic, in: Proc. Third Berkeley Sympos. Math. Statist. Probab. 1, 13-17.
  • B. J. N. Blight and P. V. Rao (1974), The convergence of Bhattacharyya bounds, Biometrika 61, 137-142.
  • J. D. Church and B. Harris (1970), The estimation of reliability from stress-strength relationships, Technometrics 12, 49-54.
  • F. Downton (1973), The estimation of Pr(Y<X) in the normal case, ibid. 15, 551-558.
  • J. K. Ghosh and Y. S. Sathe (1987), Convergence of the Bhattacharyya bounds-revisited, Sankhyā Ser. A 49, 37-42.
  • Z. Govindarajulu (1968), Distribution-free confidence bounds for P(X<Y), Ann. Inst. Statist. Math. 20, 229-238.
  • N. L. Johnson (1975), Letter to the editor, Technometrics 17, 393.
  • G. D. Kelley et al. (1976), Efficient estimation of P(Y<X) in the exponential case, ibid. 18, 359-360.
  • R. A. Khan (1984), On UMVU estimators and Bhattacharyya bounds in exponential distributions, J. Statist. Plann. Inference 9, 199-206.
  • R. A. Murthy (1956), A note on Bhattacharyya bounds for negative binomial distribution, Ann. Math. Statist. 27, 1182-1183.
  • D. B. Owen et al. (1964), Nonparametric upper confidence bounds for Pr(Y<X) and confidence limits for Pr{Y<X} when X and Y are normal, J. Amer. Statist. Assoc. 59, 906-924.
  • B. Reiser and I. Guttman (1986), Statistical inference for Pr(Y<X): The normal case, Technometrics 28, 253-257.
  • B. Reiser and I. Guttman (1987), A comparison of three point estimators for P(Y<X) in the normal case, Comput. Statist. Data Anal. 5, 59-66.
  • G. R. Seth (1949), On the variance of estimates, Ann. Math. Statist. 20, 1-27.
  • D. N. Shanbhag (1972), Some characterizations based on the Bhattacharyya matrix, J. Appl. Probab. 9, 580-587.
  • D. N. Shanbhag (1979), Diagonality of the Bhattacharyya matrix as a characterization, Theory Probab. Appl. 24, 430-433.
  • H. Tong (1974), A note on the estimation of Pr{Y<X} in the exponential case, Technometrics 16, 625.
  • H. Tong (1975), Errata: A note on the estimation of Pr{Y<X} in the exponential case, ibid. 17, 395.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv22z3p339bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.