ArticleOriginal scientific text

Title

Conjugate priors for exponential-type processes with random initial conditions

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

The family of proper conjugate priors is characterized in a general exponential model for stochastic processes which may start from a random state and/or time.

Keywords

conjugate prior, stopping time, exponential-type process

Bibliography

  1. M. Arato (1978), On the statistical examination of continuous state Markov processes III, Selected Transl. in Math. Statist. and Probab. 14, 253-267.
  2. O. E. Barndorff-Nielsen (1980), Conditionality resolutions, Biometrika 67, 293-310.
  3. I. V. Basawa and B. L. S. Prakasa Rao (1980), Statistical Inference for Stochastic Processes, Academic Press, New York.
  4. P. Diaconis and D. Ylvisaker (1979), Conjugate priors for exponential families, Ann. Statist. 7, 269-281.
  5. R. Döhler (1981), Dominierbarkeit und Suffizienz in der Sequentialanalyse, Math. Operationsforsch. Statist. Ser. Statist. 12, 101-134.
  6. I. S. Gradshteĭn and I. M. Ryzhik (1971), Tables of Integrals, Sums, Series and Products, Nauka, Moscow (in Russian).
  7. R. S. Liptser and A. N. Shiryaev (1978), Statistics of Random Processes, Vol. 2, Springer, Berlin.
  8. R. Magiera and V. T. Stefanov (1989), Sequential estimation in exponential-type processes under random initial conditions, Sequential Anal. 8 (2), 147-167.
  9. R. Magiera and M. Wilczyński (1991), Conjugate priors for exponential-type processes, Statist. Probab. Lett. 12, 379-384.
  10. A. F. Taraskin (1974), On the asymptotic normality of vector-valued stochastic integrals and estimates of drift parameters of a multidimensional diffusion process, Theory Probab. Math. Statist. 2, 209-224.
Pages:
321-330
Main language of publication
English
Received
1993-04-15
Accepted
1994-05-25
Published
1994
Exact and natural sciences