The family of proper conjugate priors is characterized in a general exponential model for stochastic processes which may start from a random state and/or time.
Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
M. Arato (1978), On the statistical examination of continuous state Markov processes III, Selected Transl. in Math. Statist. and Probab. 14, 253-267.
O. E. Barndorff-Nielsen (1980), Conditionality resolutions, Biometrika 67, 293-310.
I. V. Basawa and B. L. S. Prakasa Rao (1980), Statistical Inference for Stochastic Processes, Academic Press, New York.
P. Diaconis and D. Ylvisaker (1979), Conjugate priors for exponential families, Ann. Statist. 7, 269-281.
R. Döhler (1981), Dominierbarkeit und Suffizienz in der Sequentialanalyse, Math. Operationsforsch. Statist. Ser. Statist. 12, 101-134.
I. S. Gradshteĭn and I. M. Ryzhik (1971), Tables of Integrals, Sums, Series and Products, Nauka, Moscow (in Russian).
R. S. Liptser and A. N. Shiryaev (1978), Statistics of Random Processes, Vol. 2, Springer, Berlin.
R. Magiera and V. T. Stefanov (1989), Sequential estimation in exponential-type processes under random initial conditions, Sequential Anal. 8 (2), 147-167.
R. Magiera and M. Wilczyński (1991), Conjugate priors for exponential-type processes, Statist. Probab. Lett. 12, 379-384.
A. F. Taraskin (1974), On the asymptotic normality of vector-valued stochastic integrals and estimates of drift parameters of a multidimensional diffusion process, Theory Probab. Math. Statist. 2, 209-224.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv22z3p321bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.