ArticleOriginal scientific text

Title

Poisson sampling for spectral estimation in periodically correlated processes

Authors 1

Affiliations

  1. Laboratoire d'Analyse et Modèles Stochastiques, URA CNRS 1378, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France

Abstract

We study estimation problems for periodically correlated, non gaussian processes. We estimate the correlation functions and the spectral densities from continuous-time samples. From a random time sample, we construct three types of estimators for the spectral densities and we prove their consistency.

Keywords

quartic-mean consistency, periodically correlated processes, spectral density functions, Poisson sampling

Bibliography

  1. D. Dehay, Spectral analysis of the covariance kernel of the almost periodically correlated processes, Stochastic Process. Appl., submitted.
  2. H. L. Hurd, An investigation of periodically correlated processes, Ph.D. Dissertation, Duke Univ., Durham, N.C., 1969.
  3. H. L. Hurd, Periodically correlated processes with discontinuous correlation functions, Theory Probab. Appl. 19 (1974), 804-807.
  4. H. L. Hurd, Nonparametric time series analysis for periodically correlated processes, IEEE Trans. Inform. Theory 35 (1989), 350-359.
  5. E. Masry, Poisson sampling and spectral estimation of continuous-time parameter processes, ibid. 24 (1978), 173-183.
  6. E. Masry and M. C. Lui, Discrete-time spectral estimation of continuous parameter -A new consistent estimate, ibid. 22 (1976), 298-312.
  7. F. Messaci, Estimation de la densité spectrale d'un processus en temps continu par échantillonnage poissonnien, Ph.D. Dissertation, Rouen Univ., 1986.
  8. H. S. Shapiro and R. A. Silverman, Alias-free sampling of random noise, J. Soc. Indust. Appl. Math. 8 (1960), 225-248.
Pages:
227-266
Main language of publication
English
Received
1993-01-21
Published
1994
Exact and natural sciences