ArticleOriginal scientific text
Title
Ergodic properties of skew products withfibre maps of Lasota-Yorke type
Authors 1
Affiliations
- Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Abstract
We consider the skew product transformation T(x,y)= (f(x), ) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary drilling of hard rock with high rotational speed.
Keywords
Frobenius-Perron operator, invariant measure, motion of cogged bits
Bibliography
- N. Dunford and J. Schwartz, Linear Operators I, Interscience, New York, 1958.
- P. Góra and A. Boyarsky, Compactness of invariant densities for families of expanding, piecewise monotonic transformations, Canad. J. Math. 61 (1989), 855-869.
- K. Horbacz, Statistical properties of the Ejgielies model of a cogged bit, Zastos. Mat. 21 (1991), 15-26.
- Z. S. Kowalski, Bernoulli properties of piecewise monotonic transformations, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 59-61.
- Z. S. Kowalski, Stationary perturbations based on Bernoulli processes, Studia Math. 97 (1990), 53-57.
- Z. S. Kowalski, Ergodic properties of skew products with Lasota-Yorke type maps in the base, ibid. 106 (1993), 45-57.
- A. Lasota and P. Rusek, An application of ergodic theory to the determination of the efficiency of cogged drilling bits, Archiwum Górnictwa 3 (1974), 281-295 (in Polish).
- A. Lasota and J. A. Yorke, On the existence of invariant measure for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.
- T. Morita, Asymptotic behavior of one-dimensional random dynamical systems, J. Math. Soc. Japan 37 (1985), 651-663.
- T. Morita, Deterministic version lemmas in ergodic theory of random dynamical systems, Hiroshima Math. J. 18 (1988), 15-29.