ArticleOriginal scientific text

Title

Ergodic properties of skew products withfibre maps of Lasota-Yorke type

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

We consider the skew product transformation T(x,y)= (f(x), Te(x)) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and {Ts}sS is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary drilling of hard rock with high rotational speed.

Keywords

Frobenius-Perron operator, invariant measure, motion of cogged bits

Bibliography

  1. N. Dunford and J. Schwartz, Linear Operators I, Interscience, New York, 1958.
  2. P. Góra and A. Boyarsky, Compactness of invariant densities for families of expanding, piecewise monotonic transformations, Canad. J. Math. 61 (1989), 855-869.
  3. K. Horbacz, Statistical properties of the Ejgielies model of a cogged bit, Zastos. Mat. 21 (1991), 15-26.
  4. Z. S. Kowalski, Bernoulli properties of piecewise monotonic transformations, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 59-61.
  5. Z. S. Kowalski, Stationary perturbations based on Bernoulli processes, Studia Math. 97 (1990), 53-57.
  6. Z. S. Kowalski, Ergodic properties of skew products with Lasota-Yorke type maps in the base, ibid. 106 (1993), 45-57.
  7. A. Lasota and P. Rusek, An application of ergodic theory to the determination of the efficiency of cogged drilling bits, Archiwum Górnictwa 3 (1974), 281-295 (in Polish).
  8. A. Lasota and J. A. Yorke, On the existence of invariant measure for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.
  9. T. Morita, Asymptotic behavior of one-dimensional random dynamical systems, J. Math. Soc. Japan 37 (1985), 651-663.
  10. T. Morita, Deterministic version lemmas in ergodic theory of random dynamical systems, Hiroshima Math. J. 18 (1988), 15-29.
Pages:
155-163
Main language of publication
English
Received
1992-10-12
Published
1994
Exact and natural sciences