An upper bound for the Kolmogorov distance between the posterior distributions in terms of that between the prior distributions is given. For some likelihood functions the inequality is sharp. Applications to assessing Bayes robustness are presented.
Institute of Mathematics, polish Academy of Sciences, P.O. Box 137, 00-950 Warszawa, Poland
Bibliografia
J. O. Berger (1985), Statistical Decision Theory and Bayesian Analysis, Springer
J. O. Berger and L. M. Berliner (1986), Robust Bayes and empirical Bayes analysis with ε-contaminated priors, Ann. Statist. 14, 461-486
A. E. Gelfand and D. K. Dey (1991), On Bayesian robustness of contaminated classes of priors, Statist. Decisions 9, 63-80
M. Męczarski and R. Zieliński (1991), Stability of the Bayesian estimator of the Poisson mean under the inexactly specified gamma priors, Statist. Probab. Lett. 12, 329-333
S. T. Rachev (1991), Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester
S. Sivaganesan (1988), Ranges of posterior measures for priors with arbitrary contamination, Comm. Statist. Theory Methods 17 (5), 1591-1612
S. Sivaganesan and J. O. Berger (1989), Ranges of posterior measures for priors with unimodal contaminations, Ann. Statist. 17, 868-889
V. M. Zolotarev (1986), Contemporary Theory of Summation of Independent Random Variables, Nauka, Moscow (in Russian)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv22i1p139bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.