ArticleOriginal scientific text
Title
Sobolev embeddings with variable exponent
Authors 1, 2
Affiliations
- Centre for Mathematical Analysis, and Its Applications, School of Mathematical Sciences, University of Sussex, Brighton BN1 9QH, United Kingdom
- Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha 1, Czech Republic
Abstract
Let Ω be a bounded open subset of with Lipschitz boundary and let be Lipschitz-continuous. We consider the generalised Lebesgue space and the corresponding Sobolev space , consisting of all with first-order distributional derivatives in . It is shown that if 1 ≤ p(x) < n for all x ∈ Ω, then there is a constant c > 0 such that for all , . Here is the norm on an appropriate space of Orlicz-Musielak type and is the norm on . The inequality reduces to the usual Sobolev inequality if !$!sup_Ω p
Bibliography
- [BMS] L. Boccardo, P. Marcellini and C. Sbordone,
-regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A (7) 4 (1990), 219-225. - [DL] J. Deny et J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 305-370.
- [ER] D. E. Edmunds and J. Rákosník, Density of smooth functions in
, Proc. Roy. Soc. London Ser. A 437 (1992), 229-236. - [EvR] W. D. Evans and J. Rákosník, Anisotropic Sobolev spaces and a quasidistance function, Bull. London Math. Soc. 23 (1991), 59-66.
- [FS] N. Fusco and C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993), 153-167.
- [G] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248.
- [Gu] M. de Guzmán, A covering lemma with application to differentiability of measures and singular integral operators, Studia Math. 34 (1970), 299-317.
- [H] M. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
- [Hu] H. Hudzik, The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev space
, Comment. Math. Prace Mat. 21 (1980), 315-324. - [KR] O. Kováčik and J. Rákosník, On spaces
and , Czechoslovak Math. J. 41 (116) (1991), 592-618. - [KJF] A. Kufner, O. John and S. Fučík, Function Spaces, Noordhoff, Leyden, and Academia, Praha, 1977.
- [LU] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations, Academic Press, New York, 1968.
- [M1] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions, Arch. Rational Mech. Anal. 105 (1989), 267-284.
- [M2] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296-333.
- [Ma] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1999.
- [McS] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
- [MS] N. G. Meyers and J. Serrin, H=W, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055-1056.
- [Mu] J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin, 1983.
- [R1] M. Růžička, Electrorheological fluids: mathematical modelling and existence theory, Habilitationsschrift, Universität Bonn, 1998.
- [R2] M. Růžička, Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Sér. I 329 (1999), 393-398.
- [Ta] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
- [Zh] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv. 29 (1987), 33-66.
- [Z] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989.