ArticleOriginal scientific text

Title

Sobolev embeddings with variable exponent

Authors 1, 2

Affiliations

  1. Centre for Mathematical Analysis, and Its Applications, School of Mathematical Sciences, University of Sussex, Brighton BN1 9QH, United Kingdom
  2. Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha 1, Czech Republic

Abstract

Let Ω be a bounded open subset of n with Lipschitz boundary and let p:Ω¯[1,) be Lipschitz-continuous. We consider the generalised Lebesgue space Lp(x)(Ω) and the corresponding Sobolev space W1,p(x)(Ω), consisting of all fLp(x)(Ω) with first-order distributional derivatives in Lp(x)(Ω). It is shown that if 1 ≤ p(x) < n for all x ∈ Ω, then there is a constant c > 0 such that for all fW1,p(x)(Ω), |f|M,Ωc|f|1,p,Ω. Here |·|M,Ω is the norm on an appropriate space of Orlicz-Musielak type and |·|1,p,Ω is the norm on W1,p(x)(Ω). The inequality reduces to the usual Sobolev inequality if !$!sup_Ω p

Bibliography

  1. [BMS] L. Boccardo, P. Marcellini and C. Sbordone, L-regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A (7) 4 (1990), 219-225.
  2. [DL] J. Deny et J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 305-370.
  3. [ER] D. E. Edmunds and J. Rákosník, Density of smooth functions in Wk,p(x)(Ω), Proc. Roy. Soc. London Ser. A 437 (1992), 229-236.
  4. [EvR] W. D. Evans and J. Rákosník, Anisotropic Sobolev spaces and a quasidistance function, Bull. London Math. Soc. 23 (1991), 59-66.
  5. [FS] N. Fusco and C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993), 153-167.
  6. [G] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248.
  7. [Gu] M. de Guzmán, A covering lemma with application to differentiability of measures and singular integral operators, Studia Math. 34 (1970), 299-317.
  8. [H] M. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
  9. [Hu] H. Hudzik, The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev space Wk_M(Ω), Comment. Math. Prace Mat. 21 (1980), 315-324.
  10. [KR] O. Kováčik and J. Rákosník, On spaces Lp(x)(Ω) and Wk,p(x)(Ω), Czechoslovak Math. J. 41 (116) (1991), 592-618.
  11. [KJF] A. Kufner, O. John and S. Fučík, Function Spaces, Noordhoff, Leyden, and Academia, Praha, 1977.
  12. [LU] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations, Academic Press, New York, 1968.
  13. [M1] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions, Arch. Rational Mech. Anal. 105 (1989), 267-284.
  14. [M2] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296-333.
  15. [Ma] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1999.
  16. [McS] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
  17. [MS] N. G. Meyers and J. Serrin, H=W, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055-1056.
  18. [Mu] J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin, 1983.
  19. [R1] M. Růžička, Electrorheological fluids: mathematical modelling and existence theory, Habilitationsschrift, Universität Bonn, 1998.
  20. [R2] M. Růžička, Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Sér. I 329 (1999), 393-398.
  21. [Ta] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
  22. [Zh] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv. 29 (1987), 33-66.
  23. [Z] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989.
Pages:
267-293
Main language of publication
English
Received
1999-10-25
Accepted
2000-09-01
Published
2000
Exact and natural sciences