ArticleOriginal scientific text
Title
Extension maps in ultradifferentiable and ultraholomorphic function spaces
Authors 1, 2
Affiliations
- Institut de Mathématique, Université de Liège, Sart Tilman Bât. B 37, B-4000 Liège 1, Belgium
- Facultad de Matemáticas, Universidad de Valencia, Dr. Moliner 50, E-46100 Burjasot (Valencia), Spain
Abstract
The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
Keywords
extension map, ultradifferentiable function, Roumieu type, Beurling type
Bibliography
- E. Borel, Sur quelques points de la théorie des fonctions, Ann. Sci. Ecole Norm. Sup. 12 (1895), 9-55.
- J. C. Canille, Desenvolvimento asintotico e introduç ao as cálculo diferential resurgente, 17 Colóquio Brasileiro de Matemática, IMPA, 1989.
- H. Cartan, Sur les classes de fonctions définies par des inégalités portant sur leurs dérivées successives, Actualités Sci. Indust. 867, Publ. Inst. Math. Univ. Clermont-Ferrand, Hermann, Paris, 1940.
- A. Gorny, Contribution à l'étude de fonctions dérivables d'une variable réelle, Acta Math. 71 (1939), 317-358.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- L. Hörmander, The Analysis of Linear Partial Differential Operators, I, Springer, Berlin, 1983.
- S. Mandelbrojt, Séries Adhérentes, Régularisation des Suites, Applications, Collection de Monographies sur la Théorie des Fonctions, Gauthier-Villars, Paris, 1952.
- B. Mityagin, Approximate dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (1961), no. 4, 63-132 (in Russian); English transl.: Russian Math. Surveys 16 (1961), 59-127.
- H.-J. Petzsche, On E. Borel's theorem, Math. Ann. 282 (1988), 299-313.
- J. F. Ritt, On the derivatives of a function at a point, Ann. of Math. 18 (1916), 18-23.
- J. C. Tougeron, An introduction to the theory of Gevrey expansions and to the Borel-Laplace transform with some applications, Course of 3rd Cycle, Univ. of Toronto.
- G. Valiron, Théorie des fonctions, Masson, Paris, 1966.