ArticleOriginal scientific text
Title
The stability of Markov operators on Polish spaces
Authors 1
Affiliations
- Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
Abstract
A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.
Keywords
asymptotic stability, Markov operators
Bibliography
- M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. H. Poincaré 24 (1988), 367-394.
- P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
- R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976.
- S. Ethier and T. Kurtz, Markov Processes, Wiley, 1986.
- R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285.
- S. Karlin, Some random walks arising in learning models, Pacific J. Math. 3 (1953), 725-756.
- A. Lasota, From fractals to stochastic differential equations, in: Chaos-the Interplay between Stochastic and Deterministic Behaviour (Karpacz, 1995), Springer, 1995.
- A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77.
- T. Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247-257.