ArticleOriginal scientific text

Title

The stability of Markov operators on Polish spaces

Authors 1

Affiliations

  1. Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland

Abstract

A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.

Keywords

asymptotic stability, Markov operators

Bibliography

  1. M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. H. Poincaré 24 (1988), 367-394.
  2. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
  3. R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976.
  4. S. Ethier and T. Kurtz, Markov Processes, Wiley, 1986.
  5. R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285.
  6. S. Karlin, Some random walks arising in learning models, Pacific J. Math. 3 (1953), 725-756.
  7. A. Lasota, From fractals to stochastic differential equations, in: Chaos-the Interplay between Stochastic and Deterministic Behaviour (Karpacz, 1995), Springer, 1995.
  8. A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77.
  9. T. Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247-257.
Pages:
145-152
Main language of publication
English
Received
1999-12-20
Accepted
2000-04-06
Published
2000
Exact and natural sciences