ArticleOriginal scientific text

Title

Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem

Authors 1, 2

Affiliations

  1. Department of Mathematics, The University of Hull, Hull HU6 7RX, England
  2. Department of Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract

Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process {WtH}t[0,T] with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) dXt=AXtdt+BdWtH (t∈ [0,T]), X0=0 almost surely, where A is the generator of a C0-semigroup {S(t)}t0 of bounded linear operators on E and B ∈ ℒ(H,E) is a bounded linear operator. We further show that whenever a weak solution exists, it is unique, and given by a stochastic convolution Xt=t_{0}S(t-s)BdWsH.

Bibliography

  1. [ABB] S. Albeverio, A. M. Boutet de Monvel-Berthier and Z. Brzeźniak, The trace formula for Schrödinger operators from infinite dimensional oscillatory integrals, Math. Nachr. 182 (1996), 21-65.
  2. [AC] A. Antoniadis and R. Carmona, Eigenfunction expansions for infinite dimensional Ornstein-Uhlenbeck processes, Probab. Theory Related Fields 74 (1987), 31-54.
  3. [Bax] P. Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98 (1976), 891-952.
  4. [BRS] V. I. Bogachev, M. Röckner and B. Schmuland, Generalized Mehler semigroups and applications, Probab. Theory Related Fields 105 (1996), 193-225.
  5. [Br1] Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal. 4 (1995), 1-45.
  6. [Br2] Z. Brzeźniak, On Sobolev and Besov spaces regularity of Brownian paths, Stochastics Stochastics Rep. 56 (1996), 1-15.
  7. [Br3] Z. Brzeźniak, On stochastic convolutions in Banach spaces and applications, ibid. 61 (1997), 245-295.
  8. [BGN] Z. Brzeźniak, B. Goldys and J. M. A. M. van Neerven, Mean square continuity of Ornstein-Uhlenbeck processes in Banach spaces, in preparation.
  9. [BN] Z. Brzeźniak and J. M. A. M. van Neerven, Equivalence of Banach space-valued Ornstein-Uhlenbeck processes, Stochastics Stochastics Rep. 69 (2000), 77-94.
  10. [BP] Z. Brzeźniak and S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math. 137 (1999), 261-299.
  11. [Ca] R. Carmona, Tensor products of Gaussian measures, in: Proc. Conf. Vector Space Measures and Applications I (Dublin, 1977), Lecture Notes in Math. 644, Springer, 1978, 96-124.
  12. [DZ] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 44, Cambridge Univ. Press, Cambridge, 1992.
  13. [DS] D. A. Dawson and H. Salehi, Spatially homogeneous random evolutions, J. Multivariate Anal. 10 (1980), 141-180.
  14. [DU] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  15. [Di] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-1071.
  16. [DFL] R. M. Dudley, J. Feldman and L. Le Cam, On seminorms and probabilities, and abstract Wiener spaces, Ann. of Math. 93 (1971), 390-408.
  17. [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958.
  18. [Kuo] H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, 1975.
  19. [MS] A. Millet and W. Smole/nski, On the continuity of Ornstein-Uhlenbeck processes in infinite dimensions, Probab. Theory Related Fields 92 (1992), 531-547.
  20. [Ne1] J. M. A. M. van Neerven, Non-symmetric Ornstein-Uhlenbeck semigroups in Banach spaces, J. Funct. Anal. 155 (1998), 495-535.
  21. [Ne2] J. M. A. M. van Neerven, Sandwiching C0-semigroups, J. London Math. Soc. 60 (1999), 581-588.
  22. [Nh] A. L. Neidhardt, Stochastic integrals in 2-uniformly smooth Banach spaces, Ph.D. thesis, Univ. of Wisconsin, 1978.
  23. [Nv] J. Neveu, Processus Aléatoires Gaussiens, Les Presses de l'Univ. Montréal, 1968.
  24. [PZ] S. Peszat and J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), 187-204.
  25. [Ram] R. Ramer, On nonlinear transformations of Gaussian measures, J. Funct. Anal. 15 (1974), 166-187.
  26. [Rö1] H. Röckle, Abstract Wiener spaces, infinite-dimensional Gaussian processes and applications, Ph.D. thesis, Ruhr-Universität Bochum, 1993.
  27. [Rö2] H. Röckle, Banach space valued Ornstein-Uhlenbeck processes with general drift coefficients, Acta Appl. Math. 47 (1997), 323-349.
  28. [Schw1] L. Schwartz, Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés, J. Anal. Math. 13 (1964), 115-256.
  29. [Schw2] L. Schwartz, Radon Measures on Arbitrary Topological Vector Spaces, Oxford Univ. Press, Oxford, 1973.
  30. [VTC] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, D. Reidel, Dordrecht, 1987.
  31. [Wa] J. B. Walsh, An introduction to stochastic partial differential equations, in: P. L. Hennequin (ed.), École d'Été de Probabilités de Saint-Flour, Lecture Notes in Math. 1180, Springer, 1986, 265-439.
Pages:
43-74
Main language of publication
English
Received
1999-08-17
Accepted
2000-06-07
Published
2000
Exact and natural sciences