ArticleOriginal scientific text
Title
Weyl's theorems and continuity of spectra in the class of p-hyponormal operators
Authors 1, 2
Affiliations
- Department of Mathematics, Faculty of Science, University of Niš, Ćirila i Metodija 2, 18000 Niš, Yugoslavia
- Mathematics Department, College of Science, United Arab Emirates University, P.O. Box 17551, Al Ain, Arab Emirates
Abstract
We show that p-hyponormal operators obey Weyl's and a-Weyl's theorem. Also, we show that the spectrum, Weyl spectrum, Browder spectrum and approximate point spectrum are continuous functions in the class of all p-hyponormal operators.
Keywords
p-hyponormal operators, Weyl's theorem, continuity of spectra
Bibliography
- A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), 307-315.
- J. V. Baxley, On the Weyl spectrum of a Hilbert space operator, Proc. Amer. Math. Soc. 34 (1972), 447-452.
- S. K. Berberian, Approximate proper vectors, ibid. 13 (1962), 111-114.
- M. Chō and A. Huruya, p-hyponormal operators for 0 < p < 1/2, Comment. Math. 33 (1993), 23-29.
- M. Chō, M. Itoh and S. Ōshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), 217-220.
- S. V. Djordjević, On continuity of the essential approximate point spectrum, Facta Univer. (Niš) 10 (1995), 97-104.
- S. V. Djordjević and D. S. Djordjević, Weyl's theorems: continuity of the spectrum and quasihyponormal operators, Acta Sci. Math. (Szeged) 64 (1998), 259-269.
- B. P. Duggal, On quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), 338-345.
- S. Kurepa, Funkcionalna analiza, Školska knjiga, Zagreb, 1981 (in Croatian).
- J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176.
- V. Rakočević, On the essential approximate point spectrum II, Mat. Vesnik 36 (1984), 89-97.
- V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.
- M. Schechter, Principles of Functional Analysis, 2nd printing, Academic Press, New York, 1973.
- A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations Operator Theory 33 (1999), 221-230.