ArticleOriginal scientific text
Title
Universal divisors in Hardy spaces
Authors 1, 1
Affiliations
- U.F.R. Mathématiques, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France
Abstract
We study a division problem in the Hardy classes of the unit ball of which generalizes the corona problem, the generators being allowed to have common zeros. MPrecisely, if S is a subset of , we study conditions on a -valued bounded Mholomorphic function B, with , in order that for 1 ≤ p < ∞ and any function with there is a -valued holomorphic function F with f = B·F, i.e. the module generated by the components of B in the Hardy class is the entire module . As a special case, for S = ∅, we get the corona theorem.
Bibliography
- D. & E. Amar, Sur les suites d'interpolation en plusieurs variables, Pacific J. Math. 75 (1978), 15-20.
- E. Amar, On the corona problem, J. Geom. Anal. 1 (1991), 291-305.
- E. Amar, Interpolating sequences for
in the ball of , Ark. Mat., to appear. - E. Amar et A. Bonami, Mesures de Carleson d'ordre α et solutions au bord de l'équation
, Bull. Soc. Math. France 107 (1979), 23-48. - M. Andersson and H. Carlsson, Estimates of solutions of the
and BMOA corona problem, Math. Ann. 316 (2000), 83-102. - G. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds, Part I, Russian Math. Surveys 32 (1977), no. 3, 59-130; Part II, Math. USSR-Sb. 31 (1977), no. 1, 63-94.
- L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949.
- C. Horowitz, Factorization theorems for functions in the Bergman spaces, Duke Math. J. 44 (1977), 201-213.
- W. Rudin, Function Theory in the Unit Ball of
, Grundlehren Math. Wiss. 241, Springer,1980. - H. Skoda, Valeurs au bord pour les solutions de l'équation d'', et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225-299.
- N. Varopoulos, BMO functions and the
-equation, Pacific J. Math. 71 (1977), 221-273.