ArticleOriginal scientific text
Title
On isomorphisms of standard operator algebras
Authors 1
Affiliations
- Institute of Mathematics and Informatics, Faculty of Natural Sciences, University of Debrecen, P.O. Box 12, 4010 Debrecen, Hungary
Abstract
We show that between standard operator algebras every bijective map with a certain multiplicativity property related to Jordan triple isomorphisms of associative rings is automatically additive.
Bibliography
- M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
- M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496.
- J. Hakeda, Additivity of *-semigroup isomorphisms among *-algebras, Bull. London Math. Soc. 18 (1986), 51-56.
- I. N. Herstein, On a type of Jordan mappings, An. Acad. Bras. Cienc. 39 (1967), 357-360.
- I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
- H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2) 53 (1951), 1-12.
- W. S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695-698.
- L. Molnár, *-semigroup endomorphisms of B(H), in: I. Gohberg (ed.), Proc. Memorial Conference for Béla Szőkefalvi-Nagy, Szeged, 1999, Oper. Theory Adv. Appl. (to appear).
- M. Omladič and P. Šemrl, Linear mappings that preserve potent operators, Proc. Amer. Math. Soc. 123 (1995), 1069-1074.
- P. G. Ovchinnikov, Automorphisms of the poset of skew projections, J. Funct. Anal. 115 (1993), 184-189.
- P. Šemrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), 1851-1855.