ArticleOriginal scientific text

Title

Numerical index of vector-valued function spaces

Authors 1, 1

Affiliations

  1. Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Abstract

We show that the numerical index of a c0-, l1-, or l-sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and L1(μ,X) (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.

Bibliography

  1. Y. A. Abramovich, New classes of spaces on which compact operators satisfy the Daugavet equation, J. Operator Theory 25 (1991), 331-345.
  2. Y. A. Abramovich, C. D. Aliprantis and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991), 215-230.
  3. C. Aparicio, F. Oca na, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137.
  4. H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere in Banach algebras, Ann. of Math. 62 (1955), 217-229.
  5. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971.
  6. F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.
  7. I. K. Daugavet, A property of completely continuous operators in the space C, Uspekhi Mat. Nauk 18 (1963), no. 5, 157-158 (in Russian).
  8. J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
  9. J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481-488.
  10. B. W. Glickfeld, On an inequality of Banach algebra geometry and semi-inner-product space theory, Illinois J. Math. 14 (1970), 76-81.
  11. K. E. Gustafson and D. K. M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
  12. V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin et D. Werner, Espaces de Banach ayant la propriété de Daugavet, C. R. Acad. Sci. Paris Sér. I 325 (1997), 1291-1294.
  13. V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin et D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855-873.
  14. Å. Lima, On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes, Ark. Mat. 19 (1981), 97-116.
  15. G. López, M. Martín and R. Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207-212.
  16. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
  17. C. M. McGregor, Finite dimensional normed linear spaces with numerical index 1, J. London Math. Soc. (2) 3 (1971), 717-721.
  18. D. Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal. 143 (1997), 117-128.
  19. P. Wojtaszczyk, Some remarks on the Daugavet equation, Proc. Amer. Math. Soc. 115 (1992), 1047-1052.
Pages:
269-280
Main language of publication
English
Received
1999-10-18
Accepted
2000-06-19
Published
2000
Exact and natural sciences